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Bluetooth is a wireless protocol released in 1998 with the goal of providing wireless 
connectivity for a variety of devices. The most commonly envisioned scenario was 
cell-phone syncing with the (now ubiquitous) Bluetooth headset. Since then, 

Bluetooth has gained traction as a general-purpose, short-range wireless cable replacement 
protocol. Its use has been expanded into some predictable markets (such as video game 
controllers) as well as into some fields that the original specification writers probably never 
guessed, such as medical devices.

Bluetooth is a markedly different protocol than 802.11.Nearly all commercial products 
that implement 802.11 have a 32- or 16-bit CPU on board. Many Bluetooth devices, 
however, are constrained in terms of battery power and CPU cycles. In short, controlling  
an 802.11 chipset, even one that is implemented largely in hardware, requires a very 
complex piece of software to be executed on an external CPU (the driver and associated 
userland code). In contrast, Bluetooth chipsets can be controlled via a simple serial 
interface, and potentially driven by an 8-bit microcontroller. Some Bluetooth chipsets 
basically drive themselves.

The core Bluetooth protocol is currently over 1700 pages, and that’s not including any  
of the profiles (which are like application-level protocols). The following brief overview is 
designed to spare you and your machine the trouble of reading/loading that 1700-page file. 
Of course, the standard is the final word, but our hope is that this brief overview will be 
much easier on your eyes.

The problem every author faces when trying to describe Bluetooth is that the term 
Bluetooth is as technically precise as Internet. The Internet is composed of a large stack of 
independent protocols, most of them intentionally independent from the layers above and 
below it. Bluetooth, on the other hand, encompasses all the layers up to the application level. 
These layers are not nearly as well separated, making any explanation via comparison to 
more familiar protocols inherently fuzzy. This Bonus Web Chapter attempts to explain the 
most commonly used protocols in the Bluetooth suite in enough detail that, for those who 
are not yet familiar with Bluetooth, the chapters on attacking Bluetooth security can be 
understood without an outside reference.

High-Level Review
The goal of the following section is to describe the interactions of Bluetooth devices at a 
high level and without assuming significant knowledge of the underlying protocols. Basic 
concepts such as device discovery, frequency hopping, and piconets will be covered. 
Details on the protocol stack and implementation will come later.

The Bluetooth specification defines 79 channels across the 2.4-GHz ISM band, each 
channel occupying 1-MHz of spectrum. Devices hop across these channels at an impressive 
rate of 1600 times a second (every 625 microseconds). Whenever you find yourself 
wondering why everything in Bluetooth seems so convoluted, keep in mind that devices 
are constantly moving across these channels.

This channel-hopping technique is known as Frequency Hopping Spread Spectrum 
(FHSS), and in current Bluetooth implementations, the user can achieve a rate of 3 Mbps  
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of bandwidth across 100 meters. FHSS provides robustness against noisy channels by 
rapidly changing frequencies. Later revisions of the standard have added support for 
adaptive hopping, which allows noisy channels to be detected and avoided all together.

Any set of devices that wish to communicate using Bluetooth need to be on the  
same channel at the same time. Devices that are hopping in a coordinated fashion can 
communicate with each other and are said to form a piconet. Every piconet has a single 
master and between 1 and 7 slaves. Communication in a piconet is strictly between a slave 
and a master. The channel-hopping sequence utilized by a piconet is pseudo-random, and 
can only be generated with the address and clock of the master device.

Every device implementing Bluetooth has a high resolution 24-bit clock (referred to as 
CLKN in the specification). This clock is used to keep the frequency hopping synchronized, 
as well as schedule other events. In order to participate in a piconet, the piconet master’s 
BD_ADDR (a 48-bit MAC address) and clock must be known. Bluetooth device clocks 
increment at a rate of one every 312.5 microseconds.

Consider piconets in contrast to 802.11 networks. Two independent 802.11 APs would  
pick nonoverlapping channels to avoid collisions. Bluetooth devices avoid collisions not by 
picking a single channel, but by generating a pseudo-random list of channels and hopping 
rapidly through them. Because no two piconets will generate the same pseudo-random 
hopping sequence, on average, they will avoid collisions. For example, the hopping sequence 
illustrated in Figure 1 only contains one possible collision, at timeslot 3 on channel 5.

Device Discovery
Like all wireless protocols, Bluetooth has to handle the problem of determining whether 
potential peers are in range. This problem is significantly complicated by the frequency-
hopping scheme just outlined.

Assume for a moment that a device is already interacting in a piconet (hopping along  
with its peers) and that it is also discoverable, which means that it wants to be found by other 
devices not already in its piconet. This means that it must be able to temporarily quit hopping 

Device 1 and 2 form a piconet; they are channel hopping in step with each other.

Device 3 is not part of the piconet; it is unaware of the channel-hopping
sequence in use by the other devices.

Device 1 (master)

Device 2 (slave)

Device 3

1 8 5 4 7 6 10 2 9 12 3 11

6 4 5 10 1 2 6 3 11 8 9 7

1 8 5 4 7 6 10 2 9 12 3 11

Figure 1 Three Bluetooth device-hopping sequences, two of which are communicating in  
a piconet
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along with its piconet peers, listen for any devices that are potentially looking for it, respond 
to those requests, and then catch back up with the other devices in the piconet. Devices that 
periodically check for other devices looking for them are said to be “discoverable.” Many 
devices aren’t discoverable by default and must have this feature specifically enabled, usually 
for a brief period of time. Technically speaking, discoverable devices are devices that enter the 
inquiry scan substate. These devices respond to inquiry requests.

On the other end of this frequency-hopping dance is the device doing the discovery. 
This device has no knowledge of its potential peer channels at the moment, so it must 
transmit discovery requests (ID packets) into the air in a (mostly) random pattern, hoping to 
cross paths with a device on the same channel at the same time.

Even assuming that the discoverable device sees this request, how is it supposed to 
respond? It needs to transmit a response, but can’t be sure what channel its discovering 
buddy wandered off to. Therefore, it will start responding on a lot of channels, on the 
assumption that its discovering buddy will see one of the responses.

This, in a nutshell, is the Bluetooth peer discovery process. It sort of reminds this author  
of the scenes in Scooby Doo when the gang is running through a hallway full of doors, being 
chased by a ghoul of some sort. All the Shaggy wants to do is find Scooby, but they never seem 
to cross paths. The same sort of humor can be appreciated in a Bluetooth discovery session.

Of course, this brief description is simplified; the protocol has a few optimizations to 
help devices find each other, and there is an upper-bound on the time it takes for this entire 
exchange to happen (10.24 seconds), but the process still seems remarkably difficult. If 
you’ve ever wondered what your computer was doing when it was looking for your cell 
phone or Bluetooth mouse the first time, this is it.

Also worth mentioning, a device is said to be nondiscoverable if it simply ignores (or 
doesn’t look for) inquiry requests. The only way to establish a connection to one of these 
nondiscoverable devices is to determine its Bluetooth device address (BD_ADDR) through 
some other means. An example of this exchange appears in Figure 2.

Inquiry request

Inquiry response

ID packet
(Broadcast)

Anyone out there?

FHS packet
(I am!)

(BD_ADDR, clock)

Discoverer Discoverer

Figure 2 Bluetooth discovery process
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Once the discoverer has the BD_ADDR and clock of the discoveree, it can then attempt 
to initiate a connection (send a page request), request the device’s friendly name, and 
browse the advertised services over the service discovery protocol (SDP). We’ll examine 
these protocols in more depth later in this chapter.

Connection Establishment
When a device wishes to establish a connection to another device, it must “page” it. This 
consists of transmitting a page request on the channel it thinks the target device is currently 
on. The transmitting device may not know the target channel for a number of valid reasons 
that include power savings, clock drift due to too much time passing since the last 
communications, and so on.

Devices that accept connection requests (pages) are said to be in page-scan mode, 
because they will periodically pause their current operation (such as relaying a real-time 
audio stream) to check to see if any other devices are interested in talking to them.

This entire process is very similar to the process used when performing device discovery, 
except that the frequency hopping is less of an issue since the device transmitting the page 
has a good idea as to the current channel the target device is on.

The diagram in Figure 3 covers this in some detail. The most important thing to 
remember about “paging” or connection establishment is that in order to establish a 
connection you must know the target’s BD_ADDR, and that device must be interested in 
accepting connections.

Devices that aren’t interested in accepting connections can only establish outbound 
connections. They avoid connection establishment by never entering the page-scan state. 
Devices that don’t allow any inbound connections are called nonconnectable.

Figure 3 Connection establishment

SlaveMaster

ID packet
Sure.

Paging ID packet
Can I connect?

Page
request

Master
response

Connection

Slave
response

Page
scan

Connection

Paging ID packet
Can I connect?

FHS packet
Great, here’s our frequency.

1

2

3
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Protocol Overview
A surprising number of protocols are used within a Bluetooth network. They can generally 
be broken up into two classes: those spoken by the Bluetooth controller and those spoken 
by the Bluetooth host. For the sake of our discussion, the Bluetooth host is the laptop that 
you are trying to run attacks from. The Bluetooth controller is sitting on the other end of your 
USB port, interpreting commands from the host.

Figure 4 shows the organization of layers in the Bluetooth stack and where each layer is 
typically implemented. The controller is responsible for frequency hopping, baseband 
encapsulation, and returning the appropriate results back to the host. The host is responsible 
for higher-layer protocols. Of particular interest is the Host Controller Interface (HCI) link, 
which is used as the interface between the Bluetooth host (your laptop) and the Bluetooth 
controller (the chipset in your Bluetooth dongle).

When dealing with Bluetooth, keep this host/controller model in your mind. As 
hackers, the thing we most desire over a device is control. The separation of power in the 
model shown in Figure 4 means that we are very much at the mercy of the Bluetooth 
controller. No matter how much we want to tell the Bluetooth controller “Stick to channel 6 
and blast the following packet out forever,” unless we can map this request into a series of 
HCI requests (or find some other way to do it), we can’t. We just don’t have that much 
control over the radio.

Figure 4 Bluetooth host/controller interaction
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(laptop)

Bluetooth
controller

(silicon
chipset)

HCI link
(USB or serial)
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L2CAP

Host Controller Interface
(HCI)

Link Manager Protocol (LMP)

Baseband controller, framing

Radio interface, RF controller
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With the host/controller model in mind, let’s cover the basic protocols utilized by the 
host when performing Bluetooth communication.

Radio Frequency Communications (RFCOMM)
RFCOMM is the transport protocol used by Bluetooth devices that need reliable streams-
based transport, analogous to TCP. The RFCOMM protocol is commonly used to emulate 
serial ports, send Hayes AT commands to phones, and to transport files over the Object 
Exchange (OBEX) protocol.

Similar to TCP, RFCOMM has the notion of ports. Instead of 65,536 ports, however, 
RFCOMM has ports 1 to 30. In RFCOMM terminology, these ports are called channels.

RFCOMM is the most simple of the Bluetooth protocols to wrap your head around. It is 
also the highest level and most universally available to developers on restrictive platforms, 
such as mobile phones. RFCOMM is implemented on top of the L2CAP protocol, which 
we’ll examine next.

Logical Link Control and Adaptation Protocol (L2CAP)
L2CAP is a datagram-based protocol, which is used mostly as a transport to higher-layer 
protocols such as RFCOMM, SDP, and others. An adventurous application-level programmer 
can use L2CAP as a transport as well, and when used in this case, L2CAP has semantics 
similar to that of UDP (messaged based, not reliable, etc.).

L2CAP has a set of ports (independent from RFCOMM ports). Ports in the range 
1–4,095 are reserved/well-known. Applications may use ports between 4,097 and 32,765.  
All L2CAP ports are odd. L2CAP terminology refers to these ports as Protocol Service 
Multiplexers (PSMs).

Think of L2CAP as straddling the line between IP and UDP. Usually L2CAP is used to 
carry higher-level data packets; however, on some platforms, an application programmer 
can make use of it directly.

Host Controller Interface (HCI)
HCI is a protocol that has no allegory in an 802.11 or Ethernet-based network. As 
mentioned previously, the Bluetooth standard specifies an interface for controlling a 
Bluetooth chipset (controller). HCI is this interface. This technique means that much  
of the userland tools related to managing Bluetooth connections need no modification  
at all, even when a completely different Bluetooth chipset (controller) is used.

Controller Protocol Stack
The following protocols are handled by the Bluetooth controller (chipset). Unless utilizing 
specialized hardware, manipulation of these low-level protocols is outside the capability of 
mere mortals. As such, they are covered only briefly.

Asynchronous Connectionless Link (ACL)
ACL provides the lowest layer of encapsulation that a data packet will ever see before it 
reaches the baseband layer. ACL provides a transport layer for L2CAP packets. There is 
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virtually no programmer access to packets at this level as it is implemented on the 
Bluetooth controller.

Synchronous Connection Oriented (SCO)
SCO provides the encapsulation for low-fidelity (64 Kb/s) real-time streaming audio. This 
protocol basically exists to allow Bluetooth headsets to transmit audio at a predictable rate 
without worrying about competing for bandwidth with data packets. SCO connections 
have guaranteed terms of service while minimizing overhead. There can only be a single 
SCO connection between a master and a slave in the piconet.

While this protocol is listed in the controller stack, the host obviously needs to be aware 
enough to request using it for streaming voice-quality audio. This protocol does not provide 
enough bandwidth for streaming music in stereo.

The only time we will worry about SCO is when we are trying to decode audio from  
a Bluetooth headset.

Link Manager Protocol (LMP)
The Link Manager Protocol handles negotiation for such low-level issues as power-control, 
role-switching, QoS, and adaptive frequency hopping. It also handles encryption, 
authentication, and pairing. Although the controlling host may be aware of these features, 
and explicitly request them, the controller’s job is to determine what sort of packets need to 
be sent, and how to handle the results. The LMP defines the format for these over-the-air 
packets. LMP packets are transmitted on the ACL link.

Baseband
The Bluetooth baseband specifies the over-the-air characteristics (such as the transmission 
rate) and the final layer of framing for a packet. Unlike 802.11, where receiving all the 
packets on a channel is trivial, actually getting a packet with in-tact baseband headers out 
of the controller and into the host is difficult. Even more difficult is handing the controller 
an arbitrary buffer and having it push this out to the air as a packet. Well-behaved programs 
simply have no need for such a feature, which means most silicon you can put your hands 
on (read: cheap Bluetooth dongles) simply doesn’t implement it.

Figure 5 shows the organization of every Bluetooth packet at the lowest level.

Access Codes
The first field of every Bluetooth packet is the access code. When a Bluetooth controller 
receives a packet, the first thing it does is examine the access code to determine what to do. 
Access codes expand into the format shown in Figure 6.

Access
code Header Payload

Figure 5 Basic Bluetooth packet

02-ch02.indd   8 17/02/15   4:32 pm



Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 2

 Bonus Web Chapter 2 Bluetooth Basics (Extended Web Edition) 9

As you can see, the bulk of an access code is taken up by a 64-bit sync word. This sync 
word is key to understanding how Bluetooth device addresses are used to establish  
a connection within a piconet.

The sync word is a 64-bit expansion of the lower 24-bits of the BD_ADDR that a device 
wishes to communicate with. This point is important enough to bear repeating: The sync 
word of a Bluetooth packet is derived from the lower 24-bits of a device’s BD_ADDR. The 
details of this derivation can be found in section 6.3 of Volume 2 – Core System Package 
(Controller Volume) in the latest Bluetooth specification. Conceptually, you can think  
of the sync word expansion function as a hash, which has the very simple job of mapping 
24 bits into a 64-bit space, although it is not designed to be cryptographically hard to reverse.

At any given point in time, a Bluetooth controller will be interested in only a handful of 
sync words. Any packets received by the controller with sync words that aren’t interesting 
won’t be passed through the HCI link. These packets are assumed to be for another 
piconet. At any given time, a particular Bluetooth controller will concern itself with three 
different types of sync words. These are covered next and in Table 1.

 • The first access code that a Bluetooth controller will concern itself with is one with 
a sync word that corresponds with the local device’s own BD_ADDR. Access codes 
of this type are called Device Access Codes (DACs) and are used to handle paging 
requests. 
When a Bluetooth controller sees a sync word that is an expansion of its own  
BD_ADDR, it means that someone is trying to page it. If the controller 
is connectable (meaning it accepts page requests), it will undergo the steps 
outlined in “Connection Establishment.”

 • The next case that a Bluetooth controller concerns itself with is when the sync word 
of an access code is derived from the BD_ADDR of the piconet’s master. Access 
codes of this form are called Channel Access Codes (CACs). Packets with a CAC 
are used to carry application-level data, and the Bluetooth controller will need to 
examine the Logical Transport Address (LT_ADDR, the piconet-specific address) 
field of the header to determine if this packet is meant for the recipient, requiring 
further processing.

Access
code Header

4 bits 64 bits 4 bits

Payload

Sync wordPreamble Trailer

Figure 6 The bulk of the access code consists of the sync word.
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 • The final case that Bluetooth controllers are concerned with is that of Inquiry Access 
Codes (IACs). These codes are predefined in the specification and are used to 
indicate that a device is trying to discover other devices. There are sixty-four 24-bit 
predefined inputs to the sync word expansion function, which correspond to the 
sync words used for device discovery. As a consequence of this, there are 64 invalid 
values for the LAP of a BD_ADDR.

A Bluetooth controller that receives a packet that begins with an Inquiry Access Code  
will check to see if it is discoverable. If it is discoverable, the controller will respond to the 
request as outlined in “Device Discovery.”

Bluetooth controllers utilize the sync word of every baseband packet to determine if it should 
be examined in more detail. Packets with sync words that the controller doesn’t recognize 
are the result of another independent piconet operating nearby and are generally dropped.

Header Field
The Header field is expanded in Figure 7. Most of these fields aren’t of concern to us 
unless we are implementing our own Bluetooth controller in software.

 • LT_ADDR Logical Transport Address. Slaves in a piconet are numbered 1–7 
dynamically when they join the piconet. This field is used to identify the source 
of transmission (when the packet is destined from the slave to the master), or the 
destination slave if the master is transmitting.

 • Type The Type field is used to indentify the type of packet being used, indicating 
the data type (ACL or SCO), the data rate, and the number of slots it will occupy 
(where each transmission before the next frequency change is considered one slot).

 • Flow This bit acts as a simple flow-control feature for packets transmitted over 
ACL (SCO packets have a guaranteed timeslot). When set to 1 (known as GO), the 
receiver has sufficient buffering space; 0 implies the opposite.

 • ARQN Sometimes referred to as the sequence bit (SEQN), this field is used for 
positive acknowledgment of packet delivery and sequence numbering.

 • HEC Header Error Check. An integrity check is performed over the entire packet; 
if the computed HEC at the receiver does not match the transmitted HEC, the 
packet is dropped. The HEC is a linear feedback shift register (LFSR) initialized with 
the UAP of the master.

Sync Word Derived From Used For Name Given

Destination BD_ADDR Channel signaling  
(paging requests)

Device Access Code (DAC)

Master’s BD_ADDR Data transport Channel Access Code (CAC)

Reserved  
0x9E8B00-0x9E8B3F

Inquiry  
(Device Discovery)

Inquiry Access Code (IAC)

Table 1 Access Code Derivation
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Bluetooth Device Addresses (BD_ADDR)
Bluetooth devices come with a 6-byte 802-compliant MAC address, similar to that of 
Ethernet and 802.11 devices. In Bluetooth, these devices have a little more structure to 
them and are rarely transmitted over the air. As outlined previously, the lower 24 bits of a 
BD_ADDR is expanded into a 64-bit sync word, which is, in turn, transmitted in the access 
code of a Bluetooth baseband packet. A BD_ADDR is composed of three distinct parts, 
shown in Figure 8.

 • NAP The Nonsignificant Address Part consists of the first 16 bits of the OUI 
(organizationally unique identifier) portion of the BD_ADDR. This part is called 
nonsignificant because these 16 bits are not used for any frequency hopping or 
other Bluetooth derivation functions.

 • UAP The Upper Address Part composes the last 8 bits of the OUI in the  
BD_ADDR.

 • LAP The Lower Address Part is 24 bits and is used to uniquely identify  
a Bluetooth device.

Access
code

4 bits3 bits

SEQNARQNFlowLT_
ADDR Type HEC

1 bit 8 bits1 bit1 bit

PayloadHeader

Figure 7 Expansion of the baseband header field

OUI, assigned

to vendor

Unique, assigned

by vendor

UAPNAP LAP
(Lower Address Part)

Figure 8 Details of a BD_ADDR
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Bluetooth Profiles
If the previous whirlwind tour of the protocols involved in the Bluetooth stack weren’t 
enough to get your head spinning, there are more than enough profile-level protocols to 
confound you. Roughly speaking, profile-level protocols would be equivalent to layer 
seven, application-level protocols. However, profile-level protocols can be layered on each 
other; therefore, not all profile protocols are on the same level.

Protocols at this level are implemented on the host and can be tinkered with freely. 
Profile-level protocols will not be covered in detail. Generally speaking, unless you are 
interested in fuzzing the applications themselves (not a bad idea, actually), you don’t have 
to be concerned with the profile structure details. If you are, you can download the 
specifications and hopefully find some source code that implements it.

We should clarify that not every Bluetooth profile has its own profile-level protocol. 
Some profiles share an underlying protocol. Examples of this include the Intercom Profile 
(ICP) and the Cordless Telephony Profile, both of which make use of the Telephone Control 
Protocol (TCS-BIN).

With those caveats out of the way, here is very brief overview of the most popular 
Bluetooth profiles:

 • Generic Access Profile (GAP) The most basic Bluetoooth profile, the GAP 
specifies things such as device names, PIN specifics, device classes, and security 
modes. Implementation of this profile is mandatory and ensures that various 
Bluetooth devices will always be able to communicate on some level.

 • Service Discovery Protocol (SDP) SDP is utilized for one Bluetooth device 
to enumerate the services advertised by another Bluetooth device. Bluetooth 
services are identified with a name (required), and an optional list of attribute IDs, 
service classes, and profiles. These attribute IDs, service classes, and profiles 
allow services to identify themselves as printers, serial ports, etc. The Bluetooth 
specification allows quite a bit of detail to be encoded in these records.

SDP’s closest cousin in the traditional network world is probably the RPC 
portmapper. While the portmapper protocol doesn’t provide such exhaustive 
descriptions of running services, it does map services to TCP and UDP ports. SDP 
is used in a similar manner—to map an advertised service to a particular RFCOMM 
or L2CAP port.

 • Advanced Audio Distribution Profile (A2DP) Used for high-quality mono or 
stereo audio transmission. Used in Bluetooth headphones.

 • Headset Profile (HSP) The profile that all of those Bluetooth headsets implement. 
Utilizes SCO for audio and a small set of Hayes AT commands for control.

 • Hands Free Profile (HFP) This is basically an upgraded HSP, with a few more 
features such as last number redial. This profile is commonly found in high-end 
automobiles, although some more expensive headsets also support this profile.
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 • Human Interface Device Profile (HID) A wrapper for the popular USB HID 
protocol, which specifies an extensible protocol for mice, keyboards, etc. Wrapping 
the HID protocol allows code-reuse for developers.

 • Object Push Profile (OPP) A simplified protocol that only allows the sender to 
transmit files. Implemented on top of OBEX.

 • Object Exchange Profile (OBEX) This profile underlies many others, such as OPP, 
Basic Imaging Profile, and the Basic Printing Profile. The original OBEX profile was 
developed for infrared communication (IrDA), and specifies a generic way for two 
peers to exchange files.

 • Personal Area Networking Profile (PAN) This profile allows for encapsulation  
of layer three network traffic over Bluetooth Network Encapsulation Protocol 
(BNEP).

 • LAN Access Profile (LAP) A precursor to the PAN profile.

 • Serial Port Profile (SPP) This profile Allows RS-232 emulation over RFCOMM.

This is just a small set of profiles that are supported by Bluetooth. For the curious 
reader, many of these profiles are available for download at http://www.bluetooth.com/
Bluetooth/Technology/Works/Profiles_Overview.htm.

Encryption and Authentication
Encryption and authentication are built into the Bluetooth standard. Both are largely 
handled on the controller chip itself, not directly accessible to the Host Controller  
Interface layer.

Bluetooth devices can authenticate in two different ways: traditional pairing and the 
more recently added Secure Simple Pairing (SSP). SSP was added in version 2.1 of Bluetooth, 
but hasn’t seen widespread adoption yet. Both pairing protocols are covered here.

For those of you anxious to move on to more concrete material, feel free to skim the 
details and dig into the next section where we dissect a basic Bluetooth adapter.

Traditional Pairing Process, Link Key Creation
This section covers the original traditional pairing process, which was superseded by the 
release of Bluetooth 2.1 and the Secure Simple Pairing process. The tradition process is still 
used in many Bluetooth devices.

In the traditional pairing process, when two devices connect for the first time, a link  
key is derived from a BD_ADDR, a PIN code, and a random number. The initial process is 
best described in Figure 9. Once both sides in the exchange have created K_init, they use it 
to generate a stronger link key. The derivation of the link key is described in Figure 10.
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At this point, both devices have generated a 128-bit link key. This link key will be stored 
alongside its peer’s BD_ADDR, either on disk or in nonvolatile storage. When the two 
devices want to communicate, they will go through a handshaking process similar to that 
used in WPA. This handshake will prove possession of the link key. The link-key generation 
outlined here will only happen each time the devices are paired (typically once). For later 
authentication purposes, possession of this link key is used, not the PIN.

Proving Link-Key Possession
Bluetooth devices utilize possession of the link key to verify they are communicating with  
a device they have previously paired with. Proving possession of this link key authenticates 
the peer. The following authentication scheme is used to prove possession of the link key. 
The same exchange takes place if the link key was created using SSP or the traditional 
pairing technique and is illustrated in Figure 11.

In this exchange, there are two entities, the Verifier and the Claimant. The Verifier 
verifies that the Claimant has possession of the previously negotiated link key. The 
Verifier does this by transmitting a challenge in the clear, AU_RAND_a. Upon receiving  
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the challenge, the Claimant computes the keyed hash of the challenge using an algorithm 
called E1 and the link key. The Claimant transmits the results (called the Signed Response,  
or SRES_c) back to the Verifier. Meanwhile, the Verifier computes the same hash. If the 
Claimant’s SRES_c matches the Verifier’s computed hash, the Claimant has proven 
possession of the link key. If mutual authentication is desired, the two devices reverse  
roles and repeat the process.

Once the devices have authenticated each other by verifying possession of the link 
key, they will likely proceed to derive an encryption key. The encryption key is derived from 
a hashing function (called E3), which will take the link key as input. Details of keying 
the encryption algorithm can be found in the standard.

Figure 10 Link-key derivation
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If an attacker observes the traditional link-key generation step, as well as the link-key 
authentication step, all he needs to do to derive the link key is to brute-force the PIN until  
he generates the observed value of SRES. Once he gets the SRES to match, he possesses  
both the PIN and the link key. Details on how to mount this attack are covered in Chapter 10  
of the book.

Secure Simple Pairing
The biggest problem with the traditional pairing scheme just outlined is that a passive 
attacker who observes the pairing exchange can typically brute-force the PIN in seconds. 
Secure Simple Pairing attempts to prevent a passive observer from retrieving the link key.

Figure 11 Authentication of link-key possession
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SSP accomplishes this by using public key crypto, specifically Elliptic Curve Diffie-Hellman. 
A Diffie-Hellman key exchange allows two peers to exchange public keys and then derive a 
shared secret that an observer will not be able to reproduce. The resulting secret key is called 
the DHKey. Ultimately, the link key will be derived from the DHKey.

By using a Diffie-Hellman key exchange, a strong pool of entropy is used for deriving the 
link key, solving the biggest problem with the standard pairing derivation, where the sole 
source of entropy was a PIN only a few digits in length.

SSP adds another layer of authentication to the pairing process. In the case of SSP, you 
are trying to authenticate that the device you engaged in a Diffie-Hellman key exchange is 
the device you think it is. Doing this depends on the devices both having some form of 
input and output you can use to communicate with. These IO capabilities are explicitly 
negotiated during the SSP exchange.

The entire pairing exchange can be broken into stages. These stages are covered next 
and shown in Figure 12.

Capabilities Exchange
The first stage in an SSP session is a capabilities exchange. During this exchange, the link 
managers on both devices trade information on whether they have the capability to input 

Figure 12 Secure Simple Pairing overview
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or display information. This exchange is important because the Just Works authentication 
method, which is used when there is no better option, doesn’t provide protection against 
active man-in-the-middle (MITM) attacks. A table summarizing the capability information 
exchanged by devices is included in Tables 2 and 3.

These separate input and output capabilities are mapped into a single IOCapability 
value, as defined in Table 4.

Some combinations of IOCapabilities cannot provide a defense against a MITM attack. 
When a link key is generated and the authentication used can protect against MITM 
attacks, the device key is called “authenticated.” If the authentication scheme cannot 
protect against MITM attacks, the link key is said to be “unauthenticated.” The possible 
combinations of IOCapabilities, as well as the resulting authentication status, are produced 
in Table 5.

Surprisingly, many devices may be happy to use the weaker form of “Just Works” 
authentication, even when both devices support a more secure authentication scheme. This is 
because devices use the following algorithm to determine which authentication system to use.

1. Has any Out-Of-Band (OOB) data successfully been received from the other device? 
Then use the OOB authentication technique.

Capability Description

No input Device cannot indicate yes or no, lacking any input capability.

Yes/No Device has a button that the user can activate to indicate yes or no.

Keyboard Device can input values 0–9, as well as indicate yes or no.

Table 2 Input Capabilities

Capability Description

No output Device cannot display a 6-digit number.

Numeric output Device can display a 6-digit number.

Table 3 Output Capabilities

Table 4 Merged Input/Output Capabilities

Local Input/Local Output No Output Numeric Output

No input NoInputNoOutput DisplayOnly

Yes/No NoInputNoOutput DisplayYesNo

Keyboard KeyboardOnly DisplayYesNo
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2. Do both devices support insecure (unauthenticated) link keys? Then use the Just 
Works Numeric Comparison with no user confirmation.

3. Does either device require an authenticated link key? Then choose the appropriate 
scheme from Table 5.

Notice that if both devices are configured to accept unauthenticated link keys, they will 
do so, even if they both have extensive IOCapabilities.

Once the IOCapabilities exchange has taken place, the devices should know what 
authentication technique will be used later. The next step is to exchange public keys and 
derive the DHKey.

Key Exchange
Key exchange is the easiest phase. The devices simply transmit their public keys to each 
other and then perform a Diffie-Hellman key exchange operation to derive DHKey. An 
attacker who captures this entire exchange will still be unable to compute DHKey, due to the 
cryptographic security of the Diffie-Hellman protocol. This key exchange is shown in 
Figure 13.

Authentication
Once the DHKey has been derived, there are four possible authentication techniques. Keep 
in mind that, although these are called “authentication” techniques, they are authenticating 
something entirely different than the authentication scheme you saw in traditional pairing. 
In traditional pairing, you are verifying possession of a link key. At this current point in the 
SSP exchange, you haven’t created the link key yet. Instead, you are trying to verify that the 
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Table 5 IOCapabilities and Authentication Status
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device you just performed a Diffie-Hellman key exchange with is the device you think it is. 
Ultimately, verification of the link key will take place using the same algorithm used in 
traditional pairing.

 • Just Works This mode runs the same protocol as numeric comparison, but the 
user does not actually make a comparison. This protocol is secure against passive 
attacks (due to the DHKey exchange), but an active MITM attack can succeed by 
sending both A and B its own public key and nonces at the right time.

 • Numeric Comparison If both devices have sufficient IO capabilities to display 
a six-digit number to the user, Numeric Comparison is used. When this technique 
is used, each device computes a hash of the exchanged public keys, as well as two 
more nonces. The devices display six digits of this hash, and the end user is expected 
to verify that the displayed hashes match and select Yes or No. Although this may 
appear to be similar to the traditional pairing process, cryptographically it is very 
different. In this case, the six-digit values displayed to the user are an artifact of the 
pairing process. They are not used as input to any cryptographic functions. Also, in 
this mode, the user is not inputting the number, rather he is comparing the number, 
which is a hash generated by both devices.

 • Out of Band This mode is used if the devices have some way other than Bluetooth 
to exchange cryptographic material. Near Field Communication is described as one 
possibility. If the OOB communications technique can be exploited with a MITM 
attack, this authentication technique will be similarly vulnerable.

 • Passkey Entry Passkey entry allows Bluetooth devices to authenticate each other 
by verifying they both possess a shared secret. This secret can be entered into both 
devices or generated on one and entered into the other. A typical use-case for this 

Figure 13 Initial key exchange in an SSP
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is a keyboard and computer. The computer generates a random PIN, and the user 
inputs it through the keyboard. When implemented poorly, this technique can be 
severely compromised.

The Just Works, Numeric Comparison, and Passkey Entry techniques are believed to 
receive the greatest adoption in next-generation Bluetooth devices and are covered in  
more detail.

Just Works Technique The Just Works authentication technique was a necessary accommodation 
to achieve the greatest level of compatibility between electronics design and Bluetooth 
security. While other authentication mechanisms offer a greater level of security, they all 
require some level of Man-Machine Interface (MMI) to display content or collect responses 
from the end-user. This requirement would otherwise limit the scope of deployment 
options for Bluetooth developers, requiring an authentication mechanism that does not 
require any input from the user.

As a dissatisfactory by-product, the Just Works mechanism is also the easiest to use, 
leading developers and end-users to choose this authentication mechanism over stronger 
protocols. Although the Just Works method protects against the passive eavesdropping 
attacks that plague legacy PIN authentication, it does not protect against active attacks. 
Devices that accept Just Works authentication are incapable of authenticating the identity of 
the remote entity or defeating MITM attacks, leaving the link-layer exposed to a variety of 
upper-level profile attack options.

For example, consider a case where a Bluetooth USB HID interface is used on a PC 
intended for use with a Bluetooth keyboard. If the PC is connectable, an adversary could 
impersonate a legitimate keyboard device and send arbitrary keystrokes to the host, 
perhaps downloading and running malware-ridden executables from the Internet. In this 
example, the PC device is at fault for accepting the Just Works authentication technique 
when stronger input mechanisms are available, though it isn’t unreasonable to foresee  
a situation where Just Works is used by a device manufacturer to simplify the product  
setup process.

Numeric Comparison Technique In the Numeric Comparison technique, both devices generate 
and exchange nonces (a number used once), and then compute a hash of these nonces as 
well as the public keys exchanged previously. This hash is displayed to the user in the form 
of a six-digit number. The user is supposed to compare these numbers to verify that they 
match. If so, the user presses the Yes button to indicate pairing should proceed. If the hashes 
don’t match, then an active attacker has tried to inject keying material or a transmission  
error has occurred. In either case, the pairing shouldn’t proceed. This process is shown  
in Figure 14.

Passkey Authentication Technique In the Passkey authentication mode, the user inputs an 
identical passkey into both devices, or one device generates a passphrase which is input to 
the other. The goal of the protocol is to verify the passphrase with the other device, one bit 
at a time. For every bit in the passphrase, the devices will compute a hash including the bit 
and transmit the hash to the other side. In the simplified example shown in Figure 15, both 
sides will transmit eight hashes.
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The Bluetooth specification calls this protocol a “gradual release” procedure of the 
passphrase, and it is rationalized in the following manner. Device A reveals ra[i] before 
device B does. B, however, has already transmitted his commitment hash, before A reveals 
the bit. This means that B cannot change his choice at this point (in other words,  
he is committed).

This process prevents a MITM attack because the commitment hash also has the  
public keys used in the DHKey exchange as input. A potential MITM is, therefore, in the 
difficult position of having to transmit a hash, which has an input the attacker will only  
be able to guess with 50 percent accuracy. The odds that an attacker will successfully  
guess a randomly generated passphrase in such a matter are ½i, where i is the length  
of the passphrase in bits.

Figure 14 Numerical Comparison authentication technique

Non-initiator
(B)

Initiator
(A)

Generate a
random nonce

NA

Generate a
random nonce

NB

Compute commitment (hash)
CB = f1(PKb, PKa, NB, 0)

Here’s a nonce from me to use
on your display: NA

Here’s my hash of our public keys
and my nonce: CB

Here’s the nonce I used, NB
If this doesn't compute, abort!

Compute CB,
verify or abort

Compute hash
Va = g(PKa, PKb,

Na, Nb)

Display Va to user

Compute hash
Vb = g(PKa, PKb,

Na, Nb)

Display Vb to user

User compares displays.

Numbers
match,

continue

Numbers
match,

continue

02-ch02.indd   22 17/02/15   4:32 pm



Hacking_2013 / Hacking Exposed Wireless: Wireless Security Secrets and Solutions / Cache & Wright / 763-3/Bonus Web Chapter 2

 Bonus Web Chapter 2 Bluetooth Basics (Extended Web Edition) 23

Passively Attacking Passphrase Authentication
Popularity: 2

Simplicity: 4

Impact: 6

Risk Rating: 4

Figure 15 Passkey authentication
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An attacker who can observe the entire exchange shown in Figure 15 can trivially recover 
the passphrase. For every bit in the passphrase, the attacker will know the following values:

PKa, PKb Public keys observed during the initial public key exchange

CAi, CBi The commitment hashes for the ith bit

NAi, NBi The nonces used as input to the above commitment hashes

Given these values, an attacker has everything he needs to compute the ith bit himself. 
Remember, there are only two possible values for ra[i]: 1 or 0.

The attacker simply has to compute f1(PKa, PKb, Nai, 0). If the result equals CAi, then 
ra[i] = 0. If that doesn’t pan out, the attacker can compute f1(PKa, PKb, Nai, 1), which will 
reveal ra[i] is, in fact, 1.

The gist of this is that an attacker can retrieve the passphrase in its entirety, and all he has 
to do is observe the pairing and compute a few SHA256 hashes.

In this regard, SSP is actually worse than the PIN-based scheme used in traditional 
pairing. Under the old system, if the user inputs a 32-bit pin, an attacker will need to 
compute 232 hashes (worst case) before finding it. In the current system, the attacker will 
need to compute at worst 32 hashes.

The saving grace of this technique is that an attacker who learns the passphrase still 
does not know the link key, because it will be derived from the DHKey, which an attacker 
cannot derive. Once the attacker has recovered the passphrase, he can try to convince the 
devices to pair with him.

Actively Attacking Passphrase-Protected Devices
Popularity: 2

Simplicity: 2

Impact: 6

Risk Rating: 3

Another attack can be levied against a passphrase-protected device. Assume that a 
device has a 32-bit passphrase (for simplicity). Also assume that this device can be placed in 
pairing mode repeatedly. Finally, assume that you would like access to this device, and you 
don’t have the link key or passphrase.

All you need to do is randomly choose a bit for ra[i], starting with ra[0] and working  
your way up. If the device continues, then you chose correctly. If the device aborts, you 
know that you chose incorrectly and, therefore, will choose correctly the next time.

Assuming the device has a 32-bit passphrase, you will be able to guess the entire 
passphrase correctly after 16 pairing attempts (on average). The problem is that the 
protocol reveals a bit of the passphrase to the attacker at every step, regardless of her 
choice. The specification says that exponential back-off times should be used to slow  
down attacks such as this, but when such a small number of attempts are needed, it  
seems unlikely to help.
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Countermeasure
The moral of this story is that devices using passphrase authentication should never be 
configured to reuse a static passphrase. If the passphrase is randomly generated on every 
attempt, you will not be able to carry the partial information across attempts.

Authentication Phase 2
Regardless of the authentication technique used, once authentication has completed, the 
following exchange takes place. Device A computes a hash over all of the important values 
used previously (the DHKey, IOCapabilities, BD_ADDRs, etc.) and transmits the hash to 
device B. This is device B’s last chance to verify that they have agreed on everything so far. 
Device B should verify this hash, and if it checks out, send a similar hash of his own. At this 
point, the authentication phase is complete. This process is shown in Figure 16.

Link-Key Derivation
Once the authentication phase is complete, the devices are as convinced as they ever will 
be that the DHKey was negotiated with the desired party. Now it’s time to use it for creating 

Figure 16 The last stage of authentication, which is common among all authentication techniques
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the link key. Link-key derivation is simple at this point because all of the authentication is 
out of the way.

The link key is derived from the DHKey using the following hash.

LinkKeyAB=f2(DHKey, Nmaster, Nslave, "btlk", BDADDR_master, BD_ADDR_slave)

Once the devices compute the link key, they will store it along with the peer’s BD_ADDR. 
Then they can use it for future authentication sessions, without having to re-create it.

At this point, Secure Simple Pairing becomes identical to traditional pairing. Possession 
of the link key is performed utilizing the same technique shown earlier in Figure 11. 
Encryption keys will be derived using the same hashing values. The same encryption 
system is used to protect the link. Note that an attacker who observes any of these 
exchanges, and then observes the exchange in Figure 11 will not be able to compute the 
link key because it was derived from a Diffie-Hellman key exchange.

SSP Summary
Despite attacks on passphrase authentication just outlined, on average Bluetooth security is 
enhanced via the use of SSP. Unless there is a serious cryptographic breakthrough, a passive 
attacker should not be able to recover the link key since this would require a passive attack 
against the Diffie-Hellman key exchange.

The best passive attack known to date involves the misuse of the passphrase authentication 
scheme with a static key. An attacker who observes this can trivially compute the passphrase 
used for the pairing session. This is a serious flaw, because the attacker can potentially pair with 
the compromised devices herself, but she still cannot impersonate one device to the other, or 
decrypt intercepted traffic.

In order for an attacker to recover the link key between two devices, she must actively 
attack them during the pairing process. A successful attack will result in the compromised 
devices pairing with the attacker, instead of themselves. The attacker can then read/write 
data to both devices. The simplest such MITM attack involves falsifying IOCapabilties, and 
is known as the Niño attack.

SSP Niño Attack
Popularity: 2

Simplicity: 4

Impact: 6

Risk Rating: 4

Recall from our evaluation of the capabilities exchange that, when two devices pair, they 
negotiate the IOCapability information to identify a suitable authentication mechanism 
that is supported by both devices. This exchange happens before the link key is derived and, 
as such, is not a protected exchange.

Documented in his doctoral thesis from the University of Kuopio, Finland, Keijo Haataja 
describes the Niño attack, also known as the NoInputNoOutput attack. This attack leverages 
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this SSP IOCapabilities exchange deficiency to manipulate one or more devices, forcing the 
victim device to “dumb-down” its selected authentication mechanism to the Just Works 
technique. Once one or more devices are forced to this weaker authentication method, the 
attacker can eavesdrop on any data sent between devices.

First, the attacker must force two devices to re-pair. One option is to launch a denial-of-
service (DoS) attack against the Bluetooth devices in the area, designing a transmitter that 
hops along with the piconet master and jamming on each channel during the frequency-
hopping exchange. A second option is to leverage a wide-band jammer that can jam all 
79 Bluetooth channels simultaneously, ceasing all Bluetooth communication within range 
of the attacker. Once the end-user becomes frustrated with the lack of communication 
between two Bluetooth devices, the attacker would hope that the user attributes the failure 
to the devices themselves and attempts to repair the devices to resolve the issue, at which 
time the attacker would stop the DoS attack.

Immediately before the devices re-pair, the attacker would impersonate the BD_
ADDR and friendly name of both devices and implement a MITM attack, brokering  
the authentication exchange between the victim devices. Instead of allowing the 
legitimate advertised IOCapabilities to pass between devices, however, the attacker  
would indicate to the responder that the initiator only supports the NoInputNoOutput 
capability, and vice versa, effectively dumbing-down the connection exchange and 
leaving the Just Works authentication method as the only plausible method.

Because the Just Works method does not provide protection against MITM attacks, the 
attacker can complete the authentication process with each device to conclude the pairing 
exchange and finish the connection establishment. With knowledge of the link key derived 
by both devices, the attacker can now eavesdrop on the traffic between the devices, 
optionally manipulating the content as desired.

Countermeasure
The Niño attack leverages a design concession in the SSP specification to accommodate 
devices with no man-machine interface. Due to the lack of cryptographic integrity protecting 
the IOCapabilities exchange, an attacker could leverage this weakness to manipulate one or 
more victim devices into creating a connection with the attacker.

At the time of this writing, there are no available exploit tools to implement the Niño 
attack. With integrated support in the BlueZ stack for SSP, however, we believe it would be 
possible to impersonate both devices in anticipation of a pairing exchange and force the 
use of the Just Works authentication mechanism. Additional research and experimentation 
is needed to evaluate the practicality of this attack against real-world implementations.

One significant requirement for the Niño attack is to force a Bluetooth user to delete  
the prior pairing information and re-pair devices, or to actively catch a user pairing two 
devices for the first time. You can leverage this attack requirement as a countermeasure, by 
not pairing Bluetooth devices in any location that is susceptible to traffic sniffing attacks. If 
one or more of your Bluetooth devices prompts you to spuriously repair, disable Bluetooth 
on both devices temporarily until you can return to a safe location and re-pair.

Finally, as a reward for wading through all of the abstract protocol descriptions, here’s 
something concrete. The next section covers the dissection of a Bluetooth dongle.
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Anatomy of a Bluetooth Adapter
Bluetooth adapters share many of the same important characteristics as 802.11 cards. 
Antenna connectors, receive sensitivity, and transmit power are obviously important.  
The most important thing about a Bluetooth adapter, however, is its chipset. To better 
understand why this is, we are going to dissect a commonly available Bluetooth adapter,  
the D-Link DBT-120 HW ver C1. The reason we chose this adapter is because it’s easy to 
find and is known to reliably contain a Cambridge Silicon Radio (CSR) BlueCore4-external 
chipset. This chipset is desirable because it is well documented and well supported under 
Linux, and it has an external flash chip for firmware storage, which means it is easily 
hackable.

If you take apart a DWL-120, you will find a board that looks like the one shown in 
Figures 17 and 18.

Though too small to make out, the chip in Figure 17 is labeled “BC417 143BON 
751AA.” This is the CSR BlueCore4 chipset. Figure 18 shows the other side of this board, 
which contains a small flash chip. This flash chip is where the firmware for the BC4 chipset 
is stored. The particular model found in this author’s adapter was in the M29W800 family from 
STMicroelectronics.

By looking at the two images, you can determine that the entire D-Link adapter consists 
of a BC4 chipset, some flash memory, a small PCB with a crystal, and a USB plug. Essentially, 
all that D-Link did was buy a BC4 chipset from CSR, put it on a board with some flash, wrap 
it in plastic, paint it orange, and sell it to us. Seeing as how this adapter is entirely defined by 
its chipset, let’s dig a little bit deeper into the BC4 external chip.

Figure 17 The front of a CSR BC4-dongle. The BC4 chipset is the large chip in the middle.

BC4 chip

DBT 120 front
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BlueCore4 Block Diagram
Figure 19 is a simplified version of the diagram found in the BC4 datasheet. Only the 
aspects most relevant to us as hackers are included.

As you can see, the BC4 chip contains a memory manager, USB interface (which our 
HCI commands flow through), a UART (also a potential HCI interface), a Synchronous 

Figure 18 The back of a CSR BC4-dongle. The flash storage is the only chip on this side.

Flash
memory 

Crystal DBT-120 back

Figure 19 Simplified block diagramof BC4—external
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Serial Protocol Interface (used for developers), a flash interface, a 16-bit microcontroller, 
and, of course, all of the logic necessary for receiving and transmitting Bluetooth packets. 
You basically have a tiny general-purpose computer, complete with 48K of RAM, 8MB of 
storage, and a 16-bit CPU. Not bad for about $25.

One of the most interesting things to know about the BC4 chip is that it actually provides 
support for running third-party code on the chip itself. The details of this are outside the scope 
of this Bonus Web Chapter, but, in short, CSR provides a software development kit (SDK) 
called Casira that allows other vendors to compile and upload code to a BC4 device. The 
uploaded applications run on a virtual machine. This SDK is available for $3,000 directly from 
the CSR store (product id: BLUELAB).

Unfortunately, this $3,000 price tag is enough to keep open source hackers at bay, as 
we are currently unaware of any open source firmware developed for the BC4 architecture. 
However, the extendibility of the BC4 chipset will feature prominently in our efforts to gain 
control over a Bluetooth controller in Chapter 9.

Summary
This concludes our tour of the Bluetooth protocol stack. Figure 20 provides a summary of the 
Bluetooth protocol stack for reference. With this legwork out of the way, you are well prepared 
to dig into the exciting world of Bluetooth device hacking discussed in Part II of the book.

Definitions

Access code The first 68 to 72 bits of every baseband packet transmitted by Bluetooth. A sync 
word takes up the bulk of an access code. These come in three flavors: CACs, DACs, and IACs.

Basic data rate The original 1 Mbps data rate.

BD_ADDR Bluetooth Device Address. Similar to a MAC address in that it is 48 bits, but 
differs significantly in that only 24 bits are used in the baseband packet header.

Channel Access Code (CAC) Handles data delivery. The sync word in this code is derived from 
the lower 24 bits of a piconet master’s BD_ADDR.

Commitment A SHA-256-based hashing function used in Secure Simple Pairing sessions.

Device Access Code (DAC) Handles paging. The sync word in this code is derived from the lower 
24 bits of the destination device’s BD_ADDR. Without a target device’s BD_ADDR, its 
corresponding DAC cannot be derived. Without its DAC, a page request cannot be sent 
and, therefore, no data transmission can take place.

Discoverable A device that wants to be found is called “discoverable.” Technically speaking, 
a device is discoverable if it responds to inquiry scans.

Enhanced Data Rate (EDR) The improved 2 and 3 Mbps data rates.
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FHS A Frequency Hopping Synchronization packet is a special packet in the Bluetooth 
world, containing the full BD_ADDR and clock of the transmitting device during the paging 
exchange.

Inquiry Access Code (IAC) Handles inquiry signaling. The sync word in this code is used to 
indicate whether a device is searching for any Bluetooth device in range or for a particular 
class of devices

LAP Lower Address Part. The lowest 24 bits of a BD_ADDR.

Master Controller of a Bluetooth piconet. The master’s clock and BD_ADDR determine the 
piconet-hopping sequence.

NAP Nonsignificant Address Part. The 16 bits following the UAP.

Figure 20 An overview of the Bluetooth protocol stack
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Page What most people would call a “connection,” Bluetooth calls a page. A device that is 
attempting to establish a connection with another device is said to “page” it.

Page scan Devices that are willing to accept inbound connections respond to page requests 
by periodically entering the Page scan state.

Piconet A set of Bluetooth devices hopping in sequence with each other. These devices  
can communicate among themselves since they are always on the same channel at the 
same time.

Slave Participant in a piconet. The slave’s clock does not drive the hopping sequence.

Sync word Used by Bluetooth controllers to determine if a packet should be processed  
or dropped. Sync words are 64-bit expansions of a device’s LAP and are transmitted in 
access codes.

UAP Upper Address Part. The high 8 bits of a BD_ADDR, usually 00.
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